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Abstract 

In the context of the financial world in constant change and complexity, this work deals 

with the application of artificial neural networks and quadratic programming in the 

management of financial portfolios. The importance of properly characterizing financial time 

series for more accurate forecasting is highlighted, and the potential of combining 

convolutional neural networks and LSTM to improve time series forecasting is examined. In 

the portfolio composition process, quadratic programming is applied as an efficient 

technique to achieve an optimal distribution of financial assets. In conclusion, the approach 

of combining artificial neural networks and quadratic programming shows promise in the 

management of financial portfolios, but a deeper and more exhaustive study is necessary 

to determine its optimal efficiency. This paper lays the groundwork for future research, 

highlighting the importance of using up-to-date data and properly configuring models to 

achieve more informed and effective portfolio management in an ever-evolving financial 

environment. 

Keywords: portfolio management, portfolios, artificial neural networks, quadratic 

programming, financial time series, price prediction, portfolio composition 

Words: 13027 
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Resumen 

En el contexto del mundo financiero en constante cambio y complejidad, este trabajo 

aborda la aplicación de redes neuronales artificiales y programación cuadrática en la 

gestión de carteras financieras. Se destaca la importancia de caracterizar adecuadamente 

las series temporales financieras para realizar pronósticos más precisos y se examina el 

potencial de la combinación de las redes neuronales convolucionales y LSTM para mejorar 

la previsión de series de tiempo. En el proceso de composición de carteras, se aplica la 

programación cuadrática como una técnica eficiente para lograr una distribución óptima de 

activos financieros. En conclusión, el enfoque de combinar redes neuronales artificiales y 

programación cuadrática muestra promesa en la gestión de carteras financieras, pero es 

necesario un estudio más profundo y exhaustivo para determinar su eficiencia óptima. Este 

trabajo sienta las bases para futuras investigaciones, destacando la importancia de utilizar 

datos actualizados y configurar adecuadamente los modelos para lograr una gestión de 

carteras más informada y efectiva en un entorno financiero en constante evolución. 

Palabras clave: gestión de carteras, carteras, redes neuronales artificiales, 

programación cuadrática, series temporales financieras, predicción de precios, composición 

de carteras. 
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Resumo 

No contexto do mundo financeiro en constante cambio e complexidade, este traballo 

trata sobre a aplicación das redes neuronais artificiais e da programación cuadrática na 

xestión de carteiras financeiras. Destaca a importancia de caracterizar adecuadamente as 

series temporales financeiras para unha previsión máis precisa e examínase o potencial de 

combinar redes neuronais convolucionais e LSTM para mellorar a previsión de series 

temporais. No proceso de composición da carteira aplícase a programación cuadrática 

como técnica eficiente para conseguir unha distribución óptima dos activos financeiros. En 

conclusión, o enfoque de combinar redes neuronais artificiais e programación cuadrática 

resulta prometedor na xestión de carteiras financeiras, pero é necesario un estudo máis 

profundo e exhaustivo para determinar a súa eficiencia óptima. Este traballo senta as bases 

para futuras investigacións, destacando a importancia de utilizar datos actualizados e de 

configurar adecuadamente os modelos para lograr unha xestión de carteira máis informada 

e eficaz nun entorno financeiro en constante evolución. 

Palabras clave: xestión de carteiras, carteiras, redes neuronais artificiais, 

programación cuadrática, series temporales financeiras, predición de prezos, composición 

da carteira. 
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1. Introduction 

In the financial field, efficient portfolio management is a crucial task for investors and 

asset managers, since it seeks to maximize returns and minimize the risks associated with 

investments. In recent years, the field of artificial intelligence and machine learning has 

experienced remarkable progress, which has allowed the application of innovative 

techniques to improve the financial decision-making process. 

This work focuses on the integration of two powerful tools: artificial neural networks and 

quadratic programming, to address the challenge of portfolio management. The combination 

of these techniques offers a robust and promising approach to financial time series 

forecasting and portfolio composition in a highly dynamic and complex financial 

environment. 

The development of the work is structured in several fundamental sections to 

comprehensively address the topic. First, a detailed characterization of the financial time 

series is conducted, examining its essential characteristics and properties to better 

understand the behaviour of asset prices. 

Next, the potential of artificial neural networks in time series forecasting is explored. 

Background on the use of these networks in this context is presented and two widely used 

architectures are highlighted: convolutional neural networks and Long Short-Term Memory 

(LSTM) networks, both with the ability to capture complex patterns in financial data. 

The section on portfolio composition addresses the problem and presents various 

techniques applied in asset management. It is here where quadratic programming is 

introduced as a relevant and efficient tool for the optimal construction of investment 

portfolios. 

Obtaining accurate and relevant data is crucial for any financial analysis and work with 

Machine Learning algorithms. The methodology applied to obtain data is described, and how 

some of the most common indicators used in finance were computed to use as descriptive 

variables of the problem in conjunction with historical data. It also exposes how the vectors 

that will be used in the modelling and training of neural networks are structured. 
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In the last sections, the modelling and training process is discussed, which involves the 

proper configuration of the neural networks and the implementation of quadratic 

programming to obtain optimal results. Finally, the results obtained are presented, including 

the predictions generated by the neural networks and the composition of recommended 

portfolios, thus demonstrating the effectiveness of the proposed methodology in the 

management of financial portfolios. 

Taken together, this work seeks to provide a comprehensive and updated view of the 

use of artificial neural networks and quadratic programming in portfolio management, 

highlighting their potential as an option to improve financial decision-making and provide 

investors with a valuable tool for Optimize your investment strategies in a changing and 

competitive environment. 
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2. Work development 

The present work delves into the field of machine learning and artificial intelligence, 

specifically in the combined use of artificial neural networks and quadratic programming. 

This powerful synergy seeks to offer an effective and sophisticated solution for forecasting 

financial time series and the optimal composition of investment portfolios. Through the 

application of these techniques, the aim is to improve financial decision-making and 

maximize returns, while minimizing the risks associated with investments. In the following 

sections, the various stages of the process will be explored in detail, from the 

characterization of time series and the functioning of neural networks to the implementation 

of quadratic programming in the construction of efficient portfolios. 

2.1. Characterization of financial time series 

This heading is divided into two sub-headings. The first presents the fundamental 

concepts related to time series, including their characteristics, components, and 

classifications, and establishes their relationship with the analysis of time series and 

forecasting, which is the objective of this report. The second sub-heading delves into the 

characteristics of share prices, starting with a general description and moving towards more 

specific aspects, as well as the importance of the structure in which the data related to these 

are found. 

  

2.1.1. Time series and their characteristics  

Time series are a type of stochastic process that is characterized by ordering random 

variables according to time. This means that each moment is associated with a value of the 

variable that depends on chance and that can change over time. According to Ruiz (2011), 

a stochastic process is “a collection or family of random variables, ordered according to a 

subscript that is usually time” (p.01). The analysis of the time series can have different 

purposes, such as describing the behaviour of the variables or predicting or forecasting their 

future values, which is especially relevant for financial series. 
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Time series analysis is a statistical tool that allows studying the behaviour of a variable 

over time. However, there is no single consensus on the components that should be 

considered in this type of analysis. Some authors, such as Kocenda and Cerný (2017) and 

Anderson et al. (2017), propose that time series can be decomposed into three components: 

trend, seasonality, and noise. Other authors, such as Dodge (2008) and Espallargas and 

Solís (2012), suggest that a fourth component should be added: the cycle. Finally, there are 

authors who suggest that time series can have up to five components, these are the cases 

of IBM (2021) and Chirinos (2018). 

Trend: It is the long-term pattern of change that is observed in a series of data. It can 

be defined as the general and persistent direction of the variations of the series over time. 

It can be classified as positive (Graph 1), negative (Graph 2) or null (Graph 3), depending 

on whether the series increases, decreases or remains constant in the long term. The trend 

can be identified by graphical analysis or by statistical methods. This component is important 

to understand the historical behaviour and project the future of a series of data, it is common 

in the different criteria mentioned. 

Seasonality: Also called regular cyclical variation: It refers to the variation 

corresponding to the movements of the series that occur every certain period of time, Graph 

4. This component is, like the trend, common in the aforementioned criteria. Differentiating 

in that those authors who expose four and five components call seasonality the periodic 

variations corresponding to periods less than or equal to one year (such as daily, weekly, 

monthly, or annual periodicity), while the periodic variations corresponding to longer periods. 

They contemplate a component called cyclical variations. Therefore, to determine the 

seasonality of a time series, it is necessary to analyse them in a period of no less than two 

years. 

One component that cannot be explained by the other elements of the time series is 

the irregular variation or error. This component is also known as random variation, noise, or 

residual, and is shown in Graph 4. Irregular variation is common in all three criteria 

mentioned above. Some authors distinguish between irregular variation, which is occasional 

and random, and atypical variation, which is caused by isolated events that alter the 

behaviour of the series. Atypical variation can be classified into several types: additive, 

innovation, level change, transient, additive seasonality, and local trend. 
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One way to categorize the time series is according to the degree of variability that they 

present over time. According to what was exposed in Villagarcía (2006), it is possible to 

distinguish between homoscedastic and heteroscedastic series. The homoscedastic series 

are those that maintain a constant range of variation, as shown in Graph 3. On the contrary, 

heteroscedastic series are those that change the range of variation, increasing or 

decreasing its amplitude, as illustrated in Graph 1 and Graph 2. 

A key concept in time series analysis is that of stationarity. A time series is stationary 

when its statistical properties, such as the mean, variance, and covariance, do not change 

with time. This implies that the series does not present a trend, cycles, or seasonality. As 

Castillo and Varela (2010), Villavicencio (2010) and Ruiz (2011) point out, stationarity is a 

necessary condition to be able to predict the future behaviour of a time series using statistical 

techniques. An example of a stationary time series is shown in Graph 3. 

Financial time series present heteroscedasticity, that is, variances that change over 

time. This implies that they are not stationary and that their behaviour depends on external 

factors. To verify the stationarity of a time series, different methods can be used, such as 

the correlogram, which shows the autocorrelation and partial autocorrelation functions of the 

series, or unit root tests, such as Dickey Fuller’s or Phillips Perron’s. , which evaluates the 

null hypothesis that the series has a unit root. These methods are explained in more detail 

in Castillo and Varela (2010), Villavicencio (2010) and Ruiz (2011). The Graph 5 illustrates 

an example correlogram for a financial time series. 
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2.1.2. Pricing Features  

Investing in stocks or any other asset listed on the stock market is a complex and 

challenging task, requiring a thorough understanding of market trends and fluctuations. At 

the core of this understanding is the ability to analyse and interpret stock market price data, 

providing key insights into the behaviour of market participants and the factors that drive 

market movements. The purpose of this sub-section is to provide a comprehensive overview 

of the stock price environment and how they are commonly represented, pointing out the 

most important aspects for the application of the techniques that will be explored in the 

following sections. 

As explained in CNMV stock exchanges are organized markets where shares and other 

securities are traded, such as fixed income, warrants, certificates, and exchange-traded 

funds. In BME it is stated that, in Spain, there are four traditional stock exchanges (Madrid, 

Barcelona, Bilbao and Valencia) that are part of the holding Stocks and Spanish Market 

(hereinafter, BME, for its acronym in Spanish, Bolsas y Mercados Españoles), which also 

integrates other segments and trading, clearing and settlement systems values. Being, as 

explained in CNMV, the Spanish Stock Market Interconnection System (hereinafter, SIBE, 

for its acronym in Spanish, Sistema de Interconexión Bursátil Español) is the platform that 

allows continuous and electronic trading of all securities admitted to trading on the four 

Spanish stock. 

As CNMV exposes, shares are transferable securities that represent a proportional part 

of the share capital of a public limited company, and their holders are proprietary partners 

of the same. Shares may be traded on stock exchanges or other authorized secondary 

markets. 

From what was stated in Mitchell (2020), Pinset (2021) and C. Team (2023) it can be 

concluded that, to explain the price of a company’s shares, the following factors can be 

considered: 

• The supply and demand of shares in the market: if there are more buyers than 

sellers, the price will rise and vice versa. This depends on the expectations and 

confidence of investors in the future of the company. 
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• Changes in the management or production of the company: if the company improves 

its efficiency, its profitability or its innovation, the price of its shares may increase. 

On the contrary, if the company has internal problems, loses competitiveness, or is 

affected by external crises, the price may fall. 

• The company’s reputation: If the company has a good public image, is associated 

with successes or achievements, or receives good ratings from analysts, its share 

price may rise. Conversely, if the company is embroiled in scandals, lawsuits, or 

controversies, or receives poor ratings from analysts, the price may drop. 

In the texts Pinset (2021), T. I. Team (2022) and C. Team (2023) also point out the 

importance of differentiating the price of a company or its share from its intrinsic value. Being 

able to summarize considering what is indicated in these texts and what has been previously 

stated that the price of a company or action is what buyers and sellers are willing to pay for 

it at a given moment, while the intrinsic value of a company or action depends largely on the 

methodology used to value the companies and the objectives of the evaluator. 

Once the environment in which share prices are found has been contextualized in a 

general way and some of the factors that may affect them have been explained, the structure 

in which these data usually appear is explained below. Generally, the prices of the shares 

are registered periodically (daily, weekly, monthly, annually, etc.). registering for each period 

the opening price, the highest price, the lowest, the closing price, the volume, and the 

adjusted closing price, see Table 1. 

From what was exposed in Barone (2022), Chen (2022), Downey (2022), Hayes (2021) 

and Ganti (2020) it can be understood that: 

• The opening price is the first price at which a financial asset trades in a trading 

session. This price may be different from the closing price of the previous session, 

as there may be changes in supply and demand during the period when the market 

is closed. The opening price usually indicates the tone or trend of the market for that 

day. 

• The highest price is the highest price at which a financial asset trades in a trading 

session. This price reflects the highest level of buyer interest for that asset on that 

day. The higher price can be an indicator of an asset’s strength or weakness, as well 

as its volatility. 
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• The lowest price is the lowest price at which a financial asset trades in a trading 

session. This price reflects the minimum level of interest of sellers for that asset on 

that day. The lower price can be an indicator of an asset’s pressure or resistance, as 

well as its volatility. 

• The closing price is the last price at which a financial asset is traded in a trading 

session. This price is the one used to calculate the market value of that asset at the 

end of the day. The closing price is usually the most important for investors, as it 

summarizes the result of the day’s operations and shows the direction of the market. 

• Volume is the number of units of a financial asset traded in a trading session. Volume 

shows the level of activity or liquidity of a market or an asset. Volume often 

accompanies price movements, as it indicates the degree of consensus or 

divergence among market participants. 

• Adjusted closing price is the closing price of a financial asset that is changed to 

consider events such as dividends, splits, mergers, or acquisitions that affect the 

value of the asset. The adjusted closing price allows you to compare the historical 

performance of an asset with greater precision and consistency. 

Based on what was stated in Hayes (2021) and Ganti (2020), it is understood that the 

difference between the closing price and the adjusted closing price is of significant 

importance, since the former can give a distorted image of the performance of a share 

throughout the year. while the second reflects the actual value of the stock after adjusting 

for the factors that alter it. 

For example, a company’s board of directors may decide to divide the company’s 

shares 3 by 1. Thus, the company’s outstanding shares increase by a multiple of three, while 

its share price is divided by three. Let’s say a stock closed at $300 the day before your stock 

split. In this case, the closing price is adjusted to $100 ($300 divided by 3) per share to 

maintain a consistent standard of comparison. Similarly, all other previous closing prices for 

that company would be divided by three to get the adjusted closing prices. Ganti (2020) 

Due to this, the adjusted closing price is better for the application of time series analysis 

techniques, since it allows comparing the behaviour of a stock over time without the 

distortions caused by corporate events. The time series most commonly used in market 

price analysis studies is that made up of returns calculated from the adjusted closing price. 
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2.2. Artificial neural networks in the forecast of time series 

This epigraph is divided into three sub-headings. The first deals with the background to 

the use of artificial neural networks for working with time series, more specifically in 

forecasting. In the second and third sub-headings, the operation of two of the RNA layer 

structures used in this work are exposed, these being the CNN and the LSTM. 

2.2.1 Background on the use of artificial neural networks in time series 

forecasting 

In Chollet and Allaire (2018) it is stated that the ANN environment is made up of artificial 

intelligence (hereinafter IA), machine learning or automated learning (hereinafter ML) and 

deep learning or deep learning (hereinafter DL), Figure 1. Therefore, it is of vital importance 

to know the aspects of these fields that are closely related to ANN and that are briefly 

explained below. 

“Making a machine behave in such a way that a human would be called intelligent” 

(McCarthy et al. (2006), p.11) is the first definition given to the AI problem. With the aim of 

solving this problem, the first AI emerged, the so-called symbolic AI. 

As explained by Haykin (1998), Banda (2014) and Chollet and Allaire (2018), these 

early AIs involved hardcoded rules created by programmers. With the aim of achieving that 

these rules were automatically learned by the machines when observing the data, a new 

stage emerged in the development of AI, the so-called ML. This new stage gives rise to the 

emergence of a new form of programming, differentiating from the classic, in that, in this, 

the programmers introduce the data and the expected responses to them, and the 

computers are capable of generating the rules, Figure 2. 

So, it is understood that ML models try to find appropriate representations for your input 

data: transformations of the data that make it more amenable to the task at hand. In DL, 

which is a specific sub-field of ML, these data representations are modelled through 

architectures composed of successive layers, which are called RNA Chollet and Allaire 

(2018). 

After studying what was exposed in Haykin (1998), Larrañaga (2007), Banda (2014) 

and Chollet and Allaire (2018) about ANN, it can be affirmed that they are inspired by the 
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functioning of the human brain, these texts confirm and agree that three types of ANN can 

be distinguished layers: input, output and hidden. An input layer is composed of neurons 

that receive the input vectors. An output layer is made up of neurons that, during training, 

receive the output vectors and then generate the response. A hidden layer is connected to 

the environment through the input and output layers, this type of hidden layer processes the 

received input to obtain the corresponding output, Figure 3. 

One of the applications of ANN is the forecasting of time series. whose objective is to 

predict the future values of variables based on their past observations. As discussed 

previously, financial time series are often nonlinear, noisy, chaotic, and nonstationary, 

making them difficult to model and forecast. ANNs have the advantage of being able to 

capture complex nonlinear relationships and adapt to changing conditions without requiring 

prior assumptions about the distribution or structure of the data. 

The history of ANNs in financial time series forecasting dates back to the late 1980s 

and early 1990s, when researchers began to explore the potential of ANNs as an alternative 

to traditional statistical methods, such as the integrated autoregressive moving average 

model, better known as ARIMA (Autoregressive Integrated Moving Average) and 

generalized autoregressive models with conditional heteroskedasticity, better known as 

GARCH (Generalized Autoregressive Conditional Heteroskedasticity). ANNs were shown to 

have several advantages over these methods, such as the ability to capture non-linear and 

dynamic relationships, manage noisy and incomplete data, and adapt to changing market 

conditions (B. Eddy Patuwo & Michael Y. Hu (1998)). 

However, ANNs also face some limitations and challenges in financial time series 

forecasting, such as the difficulty of choosing a suitable network architecture, training 

algorithm, activation function, and input variables; the risk of overfitting and generalization 

problems; the lack of interpretability and transparency; and the high computational cost and 

time (Tealab (2018)). 

To overcome these limitations and challenges, researchers have proposed several 

enhancements and extensions to ANN for financial time series forecasting in recent 

decades. Some of the major developments include: 
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• The use of hybrid models that combine ANN with other techniques such as fuzzy 

logic, genetic algorithms, wavelet analysis, support vector machines, and deep 

learning to improve ANN performance and robustness (Wong and Guo (2010)). 

• The use of recurrent neural networks (hereinafter RNR) or bidirectional, which are a 

special type of ANN that can process sequential data and capture temporal 

dependencies. RNRs have been shown to outperform unidirectional neural networks 

in complex and non-linear time series (Guresen, Kayakutlu, and Daim (2011)). 

• The use of more complex RNA models by combining different layers, such as 

convolutional neural networks (hereinafter, CNN), long short-term memory 

(hereinafter, LSTM), gated recurrent units (hereinafter GRU) have been applied to 

financial time series forecasting with promising results (Sezer, Gudelek, and 

Ozbayoglu (2020)). 

The history of ANNs in financial time series forecasting shows that ANNs have evolved 

and improved over time to cope with the complexity and uncertainty of financial markets. 

However, some of the previously mentioned challenges and limitations still persist, such as 

overfitting, generalization, interpretability, robustness, and computational cost. 

2.2.2 Convolutional Neural Networks 

The RNA model used in this work is composed of several layers, the most important 

being the Conv1D layer, a specific type of CNN, and the LSTM layer, both mentioned in the 

previous subsection when the ANN structures that are most used today. This subsection 

focuses on the Conv1D Layer, so the fundamental concepts to understand its operation are 

explored, explaining convolution, convolutional neural networks and Conv1D and their use 

for time series analysis. An overview of convolution and how it can be applied to time series 

data is provided. Then, CNNs and their architecture, which allows them to automatically 

learn features from time series data, are discussed. Finally, Conv1D, a specific type of 

convolutional neural network layer that is particularly effective for processing time series 

data, is explained. 

As discussed in Siddiqui (2023), convolution is a mathematical operation that is 

commonly used in signal processing and image analysis. It involves taking two functions 

and producing a third function that represents how one of the original functions modifies the 



 

David Díaz Rodríguez  

21 

Application of artificial neural networks and quadratic programming in portfolio management  

other. In the context of time series data, convolution can be used to extract features from 

the data by applying a filter to the time series. 

In addition to extracting features from time series data, convolution can also be used 

for other tasks such as noise reduction, anomaly detection, and prediction. For example, 

CNN can be trained to predict future values of a time series by learning the underlying 

patterns in the data. In general, convolution is a powerful tool for analysing time series data 

and its applications are numerous Siddiqui (2023). 

CNNs were first introduced at Lecun et al. (1998) and are a type of deep learning model 

that is commonly used for image analysis. However, as previously mentioned, they can also 

be used for time series analysis, as they are well-suited for learning features from data that 

have a spatial or temporal structure. 

The architecture of a CNN consists of one or more convolutional layers, which apply 

filters to the input data to extract features. Each filter is a set of weights that are learned 

during the training process. By sliding the filter over the input data, the convolutional layer 

computes a dot product at each position, producing a new Lecun et al. (1998) feature map. 

In time series context, CNN can learn to automatically extract features from data at 

different scales and time intervals, making it a powerful tool for time series analysis. A key 

advantage of using CNN for time series analysis is that it reduces the need for manual 

feature engineering. Instead of designing filters by hand, CNN learns to automatically extract 

features from the data, making it more flexible and adaptable to diverse types of time series 

data. 

In general, the architecture of a CNN allows it to automatically learn features from time 

series data, making it a powerful tool for time series analysis, with Conv1D being one of the 

most widely used CNN structures for this task. 

As explained in Jing (2020) Conv1D is a specific type of CNN layer that is designed to 

process one-dimensional data, such as time series data. While traditional CNNs are 

designed to process two-dimensional data, Conv1D is specifically optimized for one-

dimensional data, making it more efficient and effective for time series analysis. 
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The architecture of a Conv1D layer is similar to that of a traditional CNN, but with some 

key differences. Instead of using two-dimensional filters, Conv1D uses one-dimensional 

filters, which are applied to the input time series to extract features. The features that are 

extracted from the string will depend on the different configurations used for the filter 

configuration and the number of filters used, being the following formula to calculate the 

amount of feature that each filter extracts: Equation 1 (Jing, 2020): 

𝐿𝑜𝑢𝑡 =
𝐿𝑖𝑛 + 2 ∗ 𝑝𝑎𝑑𝑑𝑖𝑛𝑔 − 𝑑𝑖𝑙𝑎𝑡𝑖𝑜𝑛 ∗ (𝑘𝑒𝑟𝑒𝑛𝑒𝑙_𝑠𝑖𝑧𝑒 − 1) − 1

𝑠𝑡𝑟𝑖𝑑𝑒
+ 1  (1) 

Where: 

Lout: is the length of the output of the filtering process or the number of features. 

Lin: the length of the input vector, corresponding in time series analysis to the number 

of observations that contain the samples of the time series that are passed to the filter. 

kernel_size: is the size of the filter, which defines how many observations of the input 

vector are passed to the filter each time. Figure 4 represents how the size of the filter can 

affect the length of the output vector. 

stride: represents the number of steps or observations by which the selection of 

observations passed to the filter is moved. Figure 5 represents how the stride parameter 

can affect the length of the output vector. 

dilation: is the distance of the observations that pass the filter. Figure 6 represents how 

the dilation parameter can affect the length of the output vector. 

padding: represents the number of zeros to add to each end of the vector. Figure 7 

represents how the padding parameter can affect the length of the output vector. 

Overall, Conv1D is a powerful tool for processing time series data, and its advantages 

include computational efficiency and the ability to capture time dependencies in the data. Its 

use cases are numerous and span different fields, making it a valuable tool for time series 

analysis. 
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2.2.3 Long short-term memory 

This subsection explains why LSTMs are one of the most widely used ANN structures 

in time series forecasting, based on a brief explanation of RNRs and why they are useful in 

solving series forecasting problems. of time, delving into why LSTMs differ from the rest of 

the RNNs, and the operation of each of the layers that make up the structure of an LSTM 

layer. 

Olah (2015) explains that an RNN can be considered as multiple copies of the same 

network, Figure 8, states that this aspect reveals that RNRs are intimately related to 

sequences and lists, which makes this type of RNA the one that naturally used for work with 

time series. 

Conventional RNRs present a problem in relation to the ability to retain information, as 

explained by Olah (2015), standard RNNs perform with great capacity only if the information 

relevant to the current situation is recent, that is, where the gap between the relevant 

information and where it is needed is small, Figure 9; further exposes that as the gap grows, 

standard RNNs are unable to access the relevant information, Figure 10. 

As previously mentioned, LSTMs are a type of RNR that can learn long-term 

dependencies on sequential data. These were proposed in Hochreiter (1997) and have been 

widely used for various tasks such as language modelling, speech recognition, machine 

translation, image description, and time series forecasting. 

The main idea of LSTM is to introduce a memory cell that can store and update 

information over long steps of time. The memory cell is controlled by three gates: an entry 

gate, a forget gate, and an exit gate. These gates are neural networks that learn to regulate 

the flow of information in and out of the cell Figure 11. 

The input gate decides how much of the new input to add to the cell state. The forget 

gate decides which part of the previous cell state to keep or delete. The output gate decides 

which part of the current cell state is to be sent to the next layer. Olah (2015) based on what 

was exposed in Hochreiter (1997), describes the operation of the doors in four steps: 

1. Deciding which cell state information is forgotten through the gate, forget gate layer 

𝑓𝑡. This gate looks at ℎ𝑡−1, hidden state from the previous time period, and 𝑥𝑡, input 
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from the current time instant, and outputs a number between 0 (undo) and 1 (hold). 

for each number in cell state 𝐶𝑡−1, Figure 12, Equation 2. 

𝑓𝑡 = 𝜎(𝑊𝑓[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)  (2) 

2. Decide what latest information is stored in the cell state. For this first the input gate 

layer decides which values to update and then a tanh (hyperbolic tangent) layer 

creates a vector of new candidate values (𝐶̃𝑡) that could be added to the state, Figure 

13, Equation 3 y Equation 4. 

𝑖𝑡 = 𝜎(𝑊𝑖[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)  (3) 

𝐶̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐)  (4) 

3. The state of the old cell, 𝐶𝑡−1 is updated to the new state of cell 𝐶𝑡 . Multiply the 

previous state by 𝑓𝑡, forgetting what is necessary, then add 𝑖𝑡 ∗ 𝐶̃𝑡. These are the 

new candidate values, scaled by how much each status value needs to be updated, 

Figure 14, Equation 5. 

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶̃𝑡  (5) 

4. An output is generated based on the cell state. Running first a sigmoid layer that 

decides what parts of the cell state is the output; then the state of the cell is passed 

through a tanh function (scaling the values between −1 and 1) and multiplied by the 

output gate, output gate, Figure 15, Equation 6 y Equation 7. 

𝑜𝑡 = 𝜎(𝑊𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)  (6) 

ℎ𝑡 = 𝑜𝑡 ∗ 𝑡𝑎𝑛ℎ(𝐶𝑡)  (7) 

LSTMs can learn to capture long-term dependencies by tuning gate values through 

back propagation. For example, if a certain input is relevant to a later exit, the input gate will 

learn to let it in, and the forgotten gate will learn to hold it in the cell state until it is needed. 

Conversely, if an input is irrelevant or stale, the gateway will learn to ignore it, and the 

forgotten gate will learn to remove it from the cell state. 

2.3 Portfolio composition 
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In this section, the problem of finding the best possible portfolio composition is exposed 

and the theory behind the objectives to solve it is explained in a general way. In addition, 

the most used techniques will be listed, differentiating between classical approaches and 

intelligent approaches. Subsequently, quadratic programming will be explained and some 

techniques within this discipline of mathematical optimization will be mentioned. It will be 

shown how the portfolio optimization problem can be described as a quadratic programming 

problem. In addition, a brief explanation of the Dual Active Set Method will be provided, a 

technique widely used in this discipline, and which will be used in the following chapters. 

2.3.1 Problem and techniques 

As Gunjan (2023) explains, portfolio optimization is the process of selecting the best 

mix of assets to hold in a portfolio based on pre-defined objectives. The objectives can be 

the maximization of return or the minimization of risk, or both. Portfolio optimization involves 

finding the optimal weights for each asset in the portfolio so that the overall portfolio meets 

the desired objectives. This can be a challenging problem due to the considerable number 

of assets to choose from and the complex relationships between them. 

Portfolio optimization is an important process for investors as it helps them minimize 

risk and maximize return on their investments. By carefully selecting the assets to hold in 

their portfolio, investors can achieve their desired level of risk and return while diversifying 

their investments to reduce overall risk. Portfolio optimization is a crucial mechanism used 

to reduce investment risk. 

There are various techniques that can be used to solve the portfolio optimization 

problem. In Gunjan (2023) these techniques are classified into two categories: classical 

approaches and intelligent approaches. Below is a general explanation of some of the 

techniques belonging to each approach. 

Classical approaches: 

• Mean-variance: This technique, proposed in Markowitz and Markowitz (1967), is 

based on the idea of minimizing the variance for a given expected return or 

maximizing the expected return for a given variance. It is a parametric quadratic 

programming (hereinafter PQP) technique that can be used to solve quadratic 

optimization problems that arise in portfolio optimization (Aijun Zhang & Chun-hung 
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Li & Agus Sudjianto (2008)). The mean variance approach assumes that investors 

are risk averse and prefer portfolios with lower variance. The technique consists of 

constructing a portfolio frontier that represents the set of portfolios that offer the 

highest expected return for a given level of risk. The optimal portfolio from this frontier 

is then selected based on the investor’s risk preferences. 

• Skewed variance: This technique extends the mean-variance approach by 

accounting for skewed distribution. It was proposed in Samuelson (1970) and can 

be used when the distribution function is not quadratic in nature. Skewness 

measures the skewness of a distribution and can provide additional information 

about the potential risks and returns of a portfolio. By incorporating asymmetry into 

the portfolio optimization process, investors can better understand potential 

downside risks and make more informed decisions. 

• Value at Risk (VaR): This statistical approach measures the potential loss in value 

of a portfolio over a defined period for a given confidence interval. It was introduced 

in the first edition of Jorion (2007) in 1997 and requires the determination of three 

parameters: time period, confidence level, and value-at-risk unit. VaR provides a 

measure of the maximum potential loss that could occur with a given probability in a 

specified time horizon. It is commonly used by financial institutions to manage their 

risk exposure and comply with regulatory requirements. 

• Conditional Value-at-Risk (CVaR): This approach widens the VaR by considering the 

expected loss that exceeds the VaR. It was introduced in Rockafellar and Uryasev 

(2002) and can manage extreme losses by using dynamic weights derived from 

historical data. CVaR provides a measure of the expected loss that could occur 

beyond the VaR threshold. It is also known as Expected Shortfall (ES) or Tail Value-

at-Risk (TVaR) and is considered a more consistent measure of risk than VaR. 

• Mean-Absolute Deviation (MAD): This technique can be used for large-scale and 

highly diversified portfolio selection problems. It was introduced in Konno and 

Yamazaki (1991) and penalizes both positive and negative deviations. MAD provides 

a measure of the average absolute deviation of portfolio returns from their mean 

value. It is considered more robust than variance-based measures, as it is less 

sensitive to outliers. 
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• Minimax: This technique uses the minimum return as a measure of risk. It was 

introduced in Cai et al. (2004) and has certain advantages when the returns are not 

normally distributed. Minimax provides a worst-case measure for a portfolio by 

minimizing the maximum potential loss that could occur. It can be useful for investors 

who are particularly concerned about downside risks. 

Smart approaches: 

• Bayesian Networks: These probabilistic graphical models can be used to model risk 

and return. They were featured on Shenoy and Shenoy (2000) and can be used to 

visualize the relationship between different variables in a model. Bayesian networks 

provide a way to represent complex dependencies between variables using directed 

acyclic graphs (DAGs). They can be used to model uncertain relationships between 

variables and to make probabilistic predictions about future events. In the context of 

portfolio management, Bayesian networks can be used to model relationships 

between different assets and make predictions about their future returns based on 

historical data and other relevant information. 

• Support Vector Regression (SVR): This machine learning technique can be used to 

determine the amount to buy and sell. It was introduced by Drucker et al. (1996) and 

has certain advantages over statistical-based techniques, such as its ability to learn 

from historical data. SVR involves building a hyperplane that separates data points 

with different labels while maximizing the margin between them. It can be used for 

regression tasks where the goal is to predict continuous values instead of discrete 

labels. In the context of portfolio management, SVR can be used to predict future 

asset prices based on historical data and other relevant information. 

• Artificial neural networks: As explained previously, these computational models can 

be used to solve complex computational and learning problems. In the context of 

portfolio management, neural networks can be used to predict future asset prices or 

returns based on historical data and other relevant information, which is what they 

are used for in this paper. 

• Reinforcement Learning: This type of machine learning involves an agent or model 

interacting with its environment to learn from its actions. It was featured in Sutton 

and Barto (2018) and works to maximize agent reward. Reinforcement learning 



 

David Díaz Rodríguez  

28 

Application of artificial neural networks and quadratic programming in portfolio management  

involves learning through trial and error interactions with an environment. The agent 

takes actions based on its current state and receives rewards or penalties based on 

the results of those actions. Over time, the agent learns to take actions that maximize 

his accumulated reward. In the context of portfolio management, reinforcement 

learning can be used to develop trading strategies that maximize returns while 

managing risk. 

2.3.2 Quadratic programming 

This sub-heading explains what quadratic programming is. What are some of the 

techniques that exist within this discipline of mathematical optimization. It also exposes how 

the portfolio optimization problem can be described as a quadratic programming problem 

and briefly explains how one of the most used techniques in this discipline works, specifically 

the so-called Dual Active Set Method, which is used in the later chapters. 

Quadratic programming can be chosen from among the techniques listed in the 

previous subheading for several reasons. First, it is a well-established technique that has 

been widely used in portfolio optimization. It can manage complex optimization problems 

with multiple constraints and can provide an efficient and effective way to solve the portfolio 

optimization problem. This makes it a useful tool for investors looking to minimize risk while 

achieving the desired level of return. Finally, quadratic programming has a solid theoretical 

foundation and has been widely studied in literature. This makes it a reliable and well-

understood technique that can be used with confidence in portfolio optimization. 

There are several quadratic programming techniques, among the most used are: 

• Interior Point: This is a linear or nonlinear programming method that achieves 

optimization by going through the centre of the solid defined by the problem instead 

of around its surface. A polynomial time linear programming algorithm using an 

interior point method was found by Karmarkar (1984). 

• Active Set: This is an algorithm used to identify the active constraints in a set of 

inequality constraints. The active constraints are then expressed as equality 

constraints, thus transforming an inequality constrained problem into a simpler 

equality constrained subproblem. The active set method was first introduced in an 
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article by Beale (1959) and developed by Fletcher (1971) and Bunch and Kaufman 

(1977). 

• Dual Active Set: The method, as exposed by Goldfarb and Idnani (1982) and 

Goldfarb and Idnani (1983), is an efficient and numerically stable dual algorithm for 

positive definite quadratic programming that takes advantage of the fact that the 

unrestricted minimum of the objective function can be used as a point of departure. 

• Augmented Lagrangian: It was independently introduced in Magnus R. Hestenes 

(1969) and Powell (1969). It is used to solve constrained optimization problems by 

adding a penalty term to the objective function that penalizes any violation of the 

constraints. The penalty term is typically a multiple of a constraint violation measure, 

such as the sum of squared constraint violations. 

• Conjugate Gradient: This is an iterative method for solving systems of linear 

equations with a symmetric positive definite matrix. It can also be used to solve 

unrestricted optimization problems by finding the minimum of a quadratic function. 

The method generates a sequence of search addresses that are conjugated with 

respect to the matrix that defines the system of equations or quadratic function. The 

conjugate gradient method was originally introduced in an article by Magnus R. 

Hestenes and Stiefel (1952). 

• Gradient Projection: The gradient projection method was introduced in J. B. Rosen 

(1960) and J. Rosen (1961). This is an iterative method for solving constrained 

optimization problems by projecting the gradient into the feasible region at each 

iteration. The projected gradient is then used as the search direction, and a line 

search is performed along this direction to find a new iteration that satisfies the 

constraints and reduces the objective function. 

From the previously mentioned techniques, the Dual Active Set Method algorithm 

(hereinafter, DASM) was selected, which, as previously mentioned, was introduced in 

Goldfarb and Idnani (1982) and Goldfarb and Idnani (1983), it is an optimization algorithm 

to solve quadratic programming problems. The algorithm predicts the active set of 

constraints that are equally satisfied in the solution of the problem. Computes a sequence 

of optimal solutions of QP problems involving some of the constraints of the original problem, 

called a sequence of dual feasible points. 
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Below is a general example of how the DASM algorithm could work using what-if values 

for a 2-asset portfolio optimization problem, the example was built from Goswami, Mondal, 

and Paruya (2012) and Walker (2014): 

Under the assumption that it is about finding the best composition of a portfolio in which, 

for simplicity, we have 2 assets, the quadratic problem would be posed as follows 

Equation 8: 

𝑚𝑖𝑛  𝑄(𝑤⃗⃗ ) = 𝑤⃗⃗ 𝑇𝐶𝑤⃗⃗ 

𝑠𝑢𝑗𝑒𝑡𝑜 𝑎:

𝑤1 + 𝑤2 = 1

0 ≤ 𝑤𝑖 ≤ 1

𝑤1𝔼 + 𝑤2𝔼 ≥ 0.005

  (8) 

Assuming that they have average monthly returns 𝑟 = [0.02 0.03] and covariance 

matrix 𝐶 = [
0.001 0.0008
0.0008 0.002

] . The vectors and matrices needed for the DASM algorithm 

can be constructed as follows: 

• The average monthly return vector would be 𝑟 = [0.02 0.03]. 

• The covariance matrix C would be used as the matrix D in DASM. 

• The constraint 𝑤1 + 𝑤2 = 1 can be written in matrix form as [1 1] [
𝑤1

𝑤2
] = 1. This 

would be the first row of the 𝐴 array in DASM. 

• The minimum return requirement 𝑤1𝔼 + 𝑤2𝔼 ≥ 0.005 can be written in matrix form 

as [0.02 0.03] [
𝑤1

𝑤2
] ≥ 0.005. This would be another row of the 𝐴 array in DASM. 

• The constraints 0 ≤ 𝑤𝑖 ≤ 1  can be written in matrix form as [1 0] [
𝑤1

𝑤2
] ≥ 0  y 

[0 1] [
𝑤1

𝑤2
] ≥ 0 for lower bounds and [−1 0] [

𝑤1

𝑤2
] ≥ −1 and [0 −1] [

𝑤1

𝑤2
] ≥ −1 for 

upper bounds. 

• The matrix 𝐴 would look like this: 𝐴 =

[
 
 
 
 
 

1 1
0.02 0.03
1 0
0 1

−1 0
0 −1 ]
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The corresponding vector 𝑏 would be [1 0.005 0 0 −1 −1]. We can then use 

the DASM algorithm to solve this quadratic programming problem and determine the optimal 

asset allocation in our portfolio. 

Step 0: Find the unrestricted minimum by solving the unrestricted quadratic 

programming problem. Set the number of elements in the active set A (empty set) to zero. 

Step 1: Choose a violated constraint, if any. In this case, suppose that the constraint 

𝑤1 + 𝑤2 = 1 is violated. 

Step 2: Calculate the primary and dual step directions and the step length 𝑡 =

𝑚𝑖𝑛(𝑡1, 𝑡2). Suppose 𝑡 = 𝑡2. 

Step 3: Step up and update the active set A and the solution (𝑆) for pair (x, A). Since 

𝑡 = 𝑡2 , we add the pth constraint (in this case 𝑤1 + 𝑤2 = 1) to 𝑁‾  and update 𝐻 and 𝑁∗ in 

Equation 9. 

𝑁∗ = (𝑁‾ 𝑇𝑄−1𝑁‾ )𝑁‾ 𝑇𝑄−1

𝐻 = 𝑄−1(𝐼 − 𝑁‾𝑁∗)
  (9) 

Where: 

𝑁∗ is the pseudo inverse or generalized Moore-Penrose inverse of 𝑁‾ . 

𝑁‾  is the matrix of the normal vectors of the constraints in the active set 𝐴. 

𝐻 is the reduced inverse Hessian operator of 𝑄. 

These steps are repeated iteratively until all constraints are satisfied and the optimal 

asset allocation has been determined. 

2.4 Data 

This section is divided into three sub-sections in which the process of obtaining the data 

necessary to conduct the rest of the procedure is described. The first details the steps 

conducted to obtain the data from the companies and select those with which they worked 

in the rest of the procedure. The second sub-heading presents a brief explanation of the 

computed indicators that will be used as input variables, together with the historical 

profitability values of the companies selected in the first sub-heading. The third sub-heading 
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exposes the procedure conducted for the creation of the input and output vectors from the 

data resulting from the second sub-heading. 

2.4.1 Data Collection 

A more detailed explanation regarding the code used to conduct the procedure 

described in this sub-heading can be found in Annex. 4 - Data Collection. 

In order to exemplify how artificial neural networks and quadratic programming can be 

used in a portfolio management strategy, it was decided in this paper to use data from the 

Spanish market. Therefore, it was decided to work with the information corresponding to the 

companies that are in the list of listed companies that is exposed in “Empresas Cotizadas” 

and can be seen in Table 2. 

The Table 2 collects the data of 119 companies. The data collected being the name, 

ticker, sector and subsector, market, index of each of the companies and whether or not 

they were selected to conduct the rest of the procedure after conducting the steps set out in 

this sub-heading. 

In order to obtain the data from the companies and analyse them to select those with 

which we worked in the rest of the procedure, was used as a source. Next, the process 

conducted to obtain and select the data is explained. 

It was decided to download the monthly data of each of the companies collected in 

Table 2. Obtaining all the data between January 31, 2000, to February 28, 2023, of each of 

the entities. 

After obtaining the data, the quality of the data was evaluated. The evaluation began 

with a visual exploratory analysis of adjusted prices since, as explained in the previous 

chapter, these are the ideal ones to use in any historical analysis methodology. 

During the aforementioned visual exploratory analysis, it was detected that there were 

irregularities in the adjusted prices of some of the series. The irregularities detected 

consisted of the incorrect registration of the adjusted prices, as well as errors in their 

calculation. These errors were easily detected by looking at the graphs of the constant trend 

adjusted closing price values over long periods of time, as seen in Graph 6, which indicates 

mis recording of price changes; as well as sudden changes of up to more than 100% in them 
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in a single period of time, which may indicate a miscalculation in the adjusted price, as seen 

in Graph 7, in this last case it was verified with other sources like, to verify that the prices 

were indeed miscalculated. 

Given the time available to carry out the study described in the procedure and the 

extensive amount of time that the investigation would require to be carried out to replace the 

erroneous values in the series, it was decided to eliminate these irregularities by using only 

the values after January 2005, which no longer presented inconsistencies in the calculation 

of the adjusted price, subsequently those series that still contained missing values and that 

presented irregularities in the registration of variations were eliminated. For the latter, those 

series in which the variations of unrecorded prices are in more than 10 observations. 

Remaining after the adjustments made 103 companies, as seen in the selected column 

of the Table 2, some of these companies have different numbers of observations, because 

not all of them existed or had gone on the market stock market before January 2005. 

Once the companies with which we worked were selected, their returns were computed 

from the adjusted prices. In addition to the returns corresponding to the selected companies, 

the returns of the adjusted closing price of the IBEX 35 were used, as well as other variables 

that serve as indicators of the behaviour of the returns, and their relationship with those of 

the index, in this case those of the IBEX 35. These variables include the volatilities of the 

companies and the index, the correlation between the values of the series and the IBEX, 

and the beta of the companies in relation to the IBEX. 

2.4.2 Indicators 

This sub-heading presents a brief explanation of the computed variables to be used as 

input variables in conjunction with the historical values of the companies’ returns. A more 

detailed explanation regarding the code used to conduct the procedure described in this 

sub-heading can be found in Annex. 4 - Indicators. 

2.4.2.1 Volatility 

Building on Hargrave (2023) and Hayes (2023), standard deviation and volatility are 

two related concepts that measure how much the price of a stock or other asset fluctuates 

over time. Standard deviation is a statistical term that quantifies the spread of a set of data 
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points around its mean value. Volatility is a financial term that describes the degree of 

variation in the returns of an asset over a given period of time. 

Standard deviation and volatility are important in stock market analysis because they 

indicate the risk and uncertainty associated with investing in a particular asset. A high 

standard deviation or volatility means that the price of the asset can change significantly in 

either direction, implying greater potential for profit or loss. A low standard deviation or 

volatility means that the asset’s price is relatively stable and predictable, which means less 

potential for profit or loss Hayes (2023). 

To calculate the volatility of a stock or index, the standard deviation of returns is 

calculated. Therefore, the necessary calculations are those shown below in the Equation 10: 

𝑅𝑖 =
𝑃𝑖 − 𝑃𝑖−1

𝑃𝑖−1
 

𝜎 = √
∑ (𝑅𝑖 − 𝑅‾)2𝑁

𝑖=1

𝑁
  (10) 

Where: 

• 𝑅𝑖 is the return of the stock in the period 𝑖 

• 𝑃𝑖 and 𝑃𝑖−1 are the prices of a share in time periods 𝑖 and 𝑖 − 1, respectively. 

• 𝜎 is the standard deviation - 𝑁 is the number of observations. 

• 𝑅‾ is the average return on the stock. 

Standard deviation and volatility are useful tools for investors and analysts to assess 

the risk-reward balance of different assets and portfolios. They can also help compare the 

performance of different assets and portfolios over time and under different market 

conditions. 

2.4.2.2 Correlation 

As Edwards (2022) explains, correlation is a statistical measure that determines how 

two variables move relative to each other. In stock market analysis, correlation can help 

understand the behaviour of different stocks or market indicators over time. Taking the data 

used in this paper as an example, if the prices of one of the selected companies tend to go 

up and down together with the IBEX 35, these prices have a positive correlation. On the 
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other hand, the company’s prices tend to rise when the IBEX 35 indicator falls, they have a 

negative correlation. A correlation coefficient of zero means that there is no linear 

relationship between the variables, being in this case the values of the IBEX 35 and the 

prices of one of the determined companies. 

As exposed by Ross (2022) the correlation between two variables is calculated using 

the following equation, Equation 11: 

𝜌𝑥𝑦 =
∑ (𝑥𝑖 − 𝑥‾)𝑛

𝑖=1 (𝑦𝑖 − 𝑦‾)

√∑ (𝑥𝑖 − 𝑥‾)2𝑛
𝑖=1 √∑ (𝑦𝑖 − 𝑦‾)2𝑛

𝑖=1

  (11) 

where: 

• 𝜌𝑥𝑦 is the correlation coefficient. 

• 𝑛 is the Number of observations. 

• 𝑥𝑖 and 𝑦𝑖 are the values of the two variables for the 𝑖 observation. 

• 𝑥‾ and 𝑦‾ are the means of the two variables. 

As also explained by Edwards (2022), the correlation coefficient ranges from -1 to 1, 

where -1 indicates perfect negative correlation, 1 indicates perfect positive correlation, and 

0 indicates no correlation at all. Being able to understand that the closer the correlation 

coefficient is to both -1 and 1, the stronger the linear relationship between the variables 

analysed. 

As previously explained, the correlation coefficient, in this paper, can be used to 

analyse how similarly the returns of a company move compared to those of the IBEX 35. 

The correlation can also be used to diversify a portfolio by choosing stocks that have a low 

or negative correlation with each other, as explained by Boyte-White (2022). This can help 

reduce overall portfolio risk, as losses from one stock can be offset by gains from another. 

However, the correlation is not constant and can change over time due to several factors, 

such as market conditions, economic events, or company news. Therefore, it is important to 

monitor the stock correlation regularly and adjust the portfolio accordingly Boyte-White 

(2022). 

Correlation is a valuable tool in stock market analysis, but it does not imply causation. 

Having a high or low correlation between two variables does not imply that one variable 

causes change in the other. Correlation simply measures the strength and direction of the 
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linear relationship between two variables, without considering other factors that may 

influence them. 

As also exposed in Edwards (2022), the correlation is closely related to the volatility of 

the market and of the shares, being able to see that, during periods of greater volatility, such 

as the financial crisis of 2008, the shares can tend to be more correlated, even if they are in 

different sectors. International markets can also become highly correlated during times of 

instability. Investors may want to include assets in their portfolios that have low market 

correlation to equity markets to help manage their risk. 

2.4.2.3 Beta 

As explained by Kenton (2022) Beta is a measure of how sensitive a stock’s returns are 

to changes in market returns. It is calculated as the slope of the regression line that fits 

historical stock and market returns. A beta of 1 means the stock is moving coordinated with 

the market, a beta greater than 1 means the stock is more volatile than the market, and a 

beta less than 1 means the stock is less volatile than the market. 

Beta is important in stock market analysis because, as Kenton (2022) explains, it helps 

investors assess the risk and return of a portfolio. By knowing the beta of each stock in a 

portfolio, investors can estimate how much the portfolio will fluctuate with market movements 

and adjust their asset allocation accordingly. For example, if an investor wants to reduce the 

risk in their portfolio, they might choose stocks with low or negative beta values that tend to 

move in the opposite direction of the market. 

As explained by Monaghan (2019) Beta is related to mapping, but they are not the 

same. As explained above, correlation is a measure of how linearly related two variables 

are, Beta, on the other hand, is a measure of how strongly related two variables are, 

indicating how much one variable change when another variable changes by one unit. Beta 

can be calculated from the correlation using the following equation, Equation 12: 

𝛽 =
𝜌𝑥𝑦𝜎𝑥

𝜎𝑦
  (12) 

where: 

• 𝜌𝑥𝑦 is the correlation coefficient between 𝑥 and 𝑦. 
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• 𝜎𝑥 is the volatility of x. 

• 𝜎𝑦 is the volatility of y. 

2.4.3 Vectors 

In this sub-section, the procedure conducted to create the input and output vectors from 

the data resulting from the procedure described in the previous sub-section is explained. A 

more detailed explanation regarding the code used to conduct the procedure described in 

this sub-heading can be found in Annex. 4 - Vectors. 

The structure of the set of input and output vectors is of vital importance in the modelling 

of ML techniques, having a significant impact on its effectiveness. The set of vectors must 

be created in a representative way for the problem to be solved, so the steps described 

below explain in detail the aspects of the problem to be answered in this work and how to 

shape the set of input and output vectors to it. 

As previously mentioned, the objective of this paper is to present a procedure for the 

use of RNA models and quadratic programming in an investment strategy. The modelling 

addresses the need to obtain the most accurate predictions possible so that later, based on 

the predictions and historical data, find the ideal portfolio composition. Therefore, the 

problem to be represented with the sets of input and output vectors is how to explain the 

behaviour of the profitability of a company at an instant of time 𝑖 + 1 with the values of 

several variables at the instant of time 𝑖. 

To represent this problem, three-dimensional vectors were created, following what was 

exposed in Chollet and Allaire (2018). The dimensions of these vectors are explained as 

follows: 

• The first dimension is comprised of the number of samples obtained by sectioning 

the observations of the different series into consecutive two-dimensional vectors. 

• The second dimension is comprised of the number of observations of the different 

series, collected in each two-dimensional vector. 

• The third dimension is the amount of series in each two-dimensional vector. 

Therefore, in order to correctly obtain these samples, it is necessary to first define which 

series will be used for the input and output vectors. The series used in the input vectors 
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were defined in the previous section, being these: the historical returns of the company and 

the IBEX, the historical volatilities of the company and the IBEX, the historical correlation of 

the company and the IBEX, and the Historical beta of the company and the IBEX. The series 

used for the output vectors is the historical profitability of the company. 

Subsequently, the time horizon to be foreseen was defined, this is a key aspect in the 

creation of the sets of inputs and outputs. The number of observations defined as the time 

horizon determines the observations of the output vectors, in the present work an 

observation was determined as the time horizon since it is desired to predict the profitability 

of the next month of the different selected companies. 

And the last aspect to define is how many observations the model must observe to infer 

the desired output. This defines the number of observations that will be taken from each 

time series to form the input vectors. To determine this aspect, an iterative process must be 

conducted, testing different quantities, and evaluating the results obtained by the models 

that are trained with them. To simplify the process, in the present work it was determined to 

evaluate different input sizes, these being 1, 2 and 3 observations. Thus, testing in a certain 

way how the size of the inputs affects the prediction obtained. 

If we have an array for the input vectors contains some 216 observations, we can 

calculate the number of samples obtained from this array following the following equation, 

Equation 13: 

𝑚 = 𝑛 − (𝑖 − 1 + 𝑜)  (13) 

where: 

• 𝑚 the Number of samples 

• 𝑛 the Number of observations in the series 

• 𝑖 and 𝑜 the Number of observations in the input and output vectors, respectively. 

The Table 3 shows the number of samples obtained for the varied sizes of input vectors 

proposed, for which the different numbers of observations of the selected 103 were 

considered. The Figure 16 shows what the input and output vectors look like, in the case in 

which the input vector has 3 observations. 

  



 

David Díaz Rodríguez  

39 

Application of artificial neural networks and quadratic programming in portfolio management  

2.5 Modelling and training 

This section is divided into two sub-sections in which the models that were built and the 

procedure used to train them are briefly described. The first subheading explains the 

structures of the models used, while the second subheading explains the particularities of 

the training methodology used. 

2.5.1 Modelling 

As previously explained, the main elements of the artificial neural network models used 

are a CNN layer and an LSTM layer. In addition to this, an input layer and an output layer 

were used, which are in charge of supplying the models with the information of the vectors 

previously constituted. A more detailed explanation regarding the code used to conduct the 

procedure described in this sub-heading can be found in Annex. 4- Modelling. 

Since three different sizes of observations were defined to consider making a 

prediction, it was necessary to build three different model structures that would adapt to the 

dimensions of the different input vectors, the different structures can be observed in the 

Figure 17. 

The first notable difference between the structures is the outputs of the input layers. 

This difference is due to the sample sizes if you have chosen to use 1, 2 or 3 observations 

to build the model. As can be seen, the size of the input layer output therefore modifies the 

size of the inputs and outputs of the CNN layer. 

As previously mentioned, the variations in the second dimension in the outputs of the 

CNN layer can be explained by the varied sizes of the input vectors. But as can be seen, 

the size of the third dimension of the output of this layer is the same in all the structures, 64, 

which indicates the number of filters chosen to use, one of the main parameters to consider 

when configuring these layers. The latter means that the observations corresponding to the 

6 variables used were divided into 64 variables that allow the model a better understanding 

of the relationship between the variables. 

Another aspect that was modified in the CNN layer of the structures was the activation 

function that by default is called ReLU (for its acronym in English, Rectified Linear Unit) was 

changed to Leaky ReLU because as explained in OmG (2021) , ReLU is a nonlinear 
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activation function that generates zero for negative inputs, which can cause some neurons 

to stop learning if many of their inputs are negative, since their gradients will be zero.  

Given what was previously explained and that some of the variables used in the input 

values have a high number of negative observations, as is the case of returns or the 

correlation of some of the series in certain periods of time, the use of the ReLU activation 

function did not seem like a good option. Therefore, it was decided to use Leaky Relu as 

activation function, which as explained in OmG (2021), this is a variant that allows a small 

constant gradient, non-zero, for negative inputs. This means that this activation function 

allows some neurons to continue learning from negative inputs. 

In the Figure 18 the domain of the ReLU and Leaky ReLU function is observed, which 

will allow you a better understanding of what was previously exposed. 

The CNN layer in all the structures is linked to an LSTM layer, which in all cases had 

64 neurons. The output of this layer was linked to the output layer which returns a single 

value. 

To conclude with the construction of the models, it was determined to use the mean 

square error (hereinafter MSE) as the function used to evaluate a candidate solution, the 

results of the model and the SGD optimizer (for its acronym in English, Stochastic Gradient 

Descent) with an Alpha of 0.0005..  

2.5.2 Training 

A more detailed explanation of the code used during the procedure described in this 

subsection can be found in Annex. 4 - Training. 

The training of Machine Learning algorithms in the forecast of time series has its 

peculiarities to how models are trained with the aim of solving other types of problems. 

Therefore, in this sub-section the training methodology used is briefly covered, which is the 

so-called walk forward validation or advance validation. 

As already mentioned, feedforward validation is a method used to evaluate machine 

learning models on time series data. This is because as explained by Brownlee (2019) it 

provides the most realistic evaluation of machine learning models on time series data. 

Traditional model evaluation methods from machine learning, such as k-fold cross-validation 
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or splitting into training and validation data, do not work for time series data because they 

ignore the time components inherent in the problem. Walk-forward validation takes these 

temporal components into account and provides a more realistic assessment of how the 

model will perform when used operationally. 

When evaluating a model, we are interested in how the model performs on data that 

was not used to train it. In machine learning, this is called unseen or out-of-sample data. 

Commonly, for the resolution of other problems, the data is divided into different subsets: 

training, testing and validation, whose objective is to train and validate the model. With the 

walk forward validation methodology, the data is divided by time periods and the model is 

trained and validated consecutively, which allows evaluating how the model understands 

the temporal dependence of the data. 

By dividing the data by time periods, it allows us to evaluate the actual functioning of 

the model if it had been applied from the first period, as well as to analyse its behaviour 

throughout all the periods, observing whether its performance improves or not. 

From what is stated in this sub-section, it is understood that the models were trained 

using the corresponding sample sets, passing all the available samples in a certain period 

of time before continuing with the next period. Obtaining as a result of the above a prediction 

corresponding to each period of time contemplated, with the exception of the first two that 

would be used to train the model for the first time, as seen in the following diagram of the 

Figure 19. 

2.6 Result 

This epigraph is divided into two sub-headings in which the results obtained are briefly 

described. In the first of the sub-headings the predictions are described and analysed. The 

second sub-heading presents the results of applying quadratic programming for portfolio 

composition based on the predictions obtained. 

2.6.1 Predictions 

A more detailed explanation of the code used during the procedure described in this 

subsection can be found in Annex. 4 - Predictions. 
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As explained previously, while the model was being trained, predictions were obtained. 

As was done with the artificial neural network models, the predictions were computed for the 

different observations using the arithmetic mean of the observations. The arithmetic mean 

was used because it is one of the most frequently used measures as an indicator of probable 

future behaviour in the study of financial time series. 

The predictions will be evaluated by computing the MSE and the real values and the R2 

of the results obtained by the artificial neural network models and the arithmetic means. 

As explained by Glen (2023) the MSE tells you how close a regression line is to a set 

of points. It does this by taking the distances from the points to the regression line (these 

distances are the “errors”) and squaring them. Squaring is necessary to remove any 

negative signs. It also gives more weight to larger differences. It is called the root mean 

square error since you are finding the average of a set of errors. The lower the MSE, the 

better the forecast, shown by Equation 14 as calculated. 

𝑀𝑆𝐸 =
1

𝑛
∗ ∑(𝑌𝑖 − 𝑌𝑖̂)

2
𝑛

𝑖=1

       (14) 

Where: 

• n: Number of observations. 

• 𝑌𝑖: real value. 

• 𝑌𝑖̂: expected value. 

As explained by Nandakumar (2020) R2 is commonly used to explain how well a model 

does compared to the total mean of the observations, Equation 15: 

𝑅2 = 1 −
𝑆𝑆𝑅

𝑆𝑆𝑇
 

𝑅2 = 1 −
∑ (𝑌𝑖 − 𝑌𝑖̂)

2𝑛
𝑖=1

∑ (𝑌𝑖 − 𝑌̅)2𝑛
𝑖=1

        (15) 

Where: 

• 𝑌̅: arithmetic mean of all observations 
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But this can be an unfair indicator of the performance of a regression model since it is 

assumed that all observations over which a mean is computed are known, and as mentioned 

above this is not the case for neural network models. artificial animals trained using the walk 

forward validation methodology. Due to this, the calculation of R2 was modified, as has been 

done in other investigations such as Gu, Kelly, and Xiu (2018), so that the model with which 

the results obtained by the ANNs used are compared is that comprised by the arithmetic 

means of the observations earlier than the one predicted. 

Next, the different results obtained by the different models built will be briefly described. 

It should be noted that, although 3 different models of each of them were proposed, 10 were 

built, with the aim of standardizing the results obtained, since the process of building and 

training neural networks contains a random factor. Therefore, the results described below 

are the average results obtained by the various models built. 

2.6.1.1 One observation 

The results obtained by those models that were trained with input vectors that had one 

observation from each series showed, as seen in Graph 8, that in the first periods the models 

presented better predictions than those obtained by the arithmetic mean. . It can be 

observed that the effectiveness of the models in comparison with the means decays as the 

model progresses in time and learns from the new observations. It is also clearly seen that 

in most periods the R2 of this model is negative. In addition, a peak is observed in the MSE 

of the model at the beginning of 2020, which is understood as a loss of effectiveness of the 

model. This loss of effectiveness of the model could be related to sudden market movements 

resulting from the economic effects of Covid-19. 

The previous analysis of the behaviour of the indicators of these models by period gives 

us an overview of how these models performed but given that the results obtained in the 

companies are essential for the composition of the portfolio, we will now analyse the 

behaviour observed in the results obtained by the 20 companies that presented the best and 

worst results, based on the R2 obtained as a criterion. 

Observing the results of the indicators exposed in the Table 4 , those companies that 

presented a worse R2 also present a low , which indicates that it is less likely that the 

composition of the portfolio will be altered by the results obtained by these companies. 
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companies. On the other hand, among the companies that obtained a better R2 there are 

some that obtained a high MSE accompanied by a R2 greater than 5%. This indicates that 

differences could be generated between the compositions of the portfolios due to the 

differences in the predictions and that these are companies that do not have a good MSE. 

The results described in the previous paragraph are similar for the cases of the models 

built with two and three observations, respectively. 

2.6.1.2 Two observations 

The results obtained by those models that were trained with input vectors that had two 

observations from each series, it was found, as seen in Graph 9, that in the first periods the 

models presented better predictions than those obtained by the mean. arithmetic. It can be 

seen that the effectiveness of the models compared to the means decays as the model 

progresses in time, but they decay at a slower rate than those models trained with input 

vectors with one observation. It is also clearly seen that the R2 of these models has less 

variation than the R2 of the previously analysed models, seeing that for these models the R2 

is positive in most of the periods. In addition, as in the case of the models analysed 

previously, a peak is also observed in the MSE of the model at the beginning of 2020.  

2.6.1.3 Three observations 

The results obtained by those models that were trained with input vectors that had three 

observations of each series, it was found, as seen in Graph 10, that in the first periods the 

models presented better predictions than those obtained by the mean. arithmetic. It can be 

seen that the effectiveness of the models compared to the means decays as the model 

progresses in time, but they decay at a slower rate than those models trained with input 

vectors with one observation. It is clearly seen that the R2 of these models has a greater 

variation than the R2 of the previously analysed models, observing how this variation 

decreases for those predictions after 2015. These models, like the first ones, presented a 

negative R2 in most of them. of the periods. In addition, as in the previous cases, a peak is 

also observed in the MSE of the model at the beginning of 2020. 
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2.6.2 Portfolios composition 

A more detailed explanation of the code used during the procedure described in this 

subsection can be found in Annex. 4 – Portfolios composition. 

This sub-heading describes the results obtained after applying quadratic programming 

to determine the composition of the portfolio. This, as well as the predictions, was made 

period by period with the aim of emulating a real situation in which the techniques were 

applied as a whole. Therefore, the present analysis focuses on the behaviour observed 

when using the various models and the comparison of these results with those obtained with 

the use of means. 

As can be seen in Graph 11, the portfolios made from the predictions obtained by the 

neural network models that had one observation generally obtained better results than the 

portfolios made from the predictions using the mean. It is observed that both portfolio groups 

presented a lower return than the index, IBEX, in the period between 2009 and 2016. 

When carrying out the analysis of the behaviour of the returns obtained by the models 

with two input observations, Graph 12, it is observed: the behaviour of the returns obtained 

by the different models varies less than those previously analysed; In this case and contrary 

to the previous case, the returns remain similar in the period between 2009 and 2016; and 

although the final result is far from the result obtained by the averages, it is lower than that 

obtained by the previous models, the latter being due to the fact that the evaluation of the 

models in this case begins in a period prior to those of the previously analysed models. 

Observing the results obtained by the latest models, Graph 13, it is observed: a 

distribution of returns higher than those trained with two observations but lower than those 

trained with one observation; it is observed that the returns begin to exceed those of the 

index after 2013 instead of 2016 as in previous years; and it is also observed that the returns 

of the RNA models are higher than those of the averages and also constitute the maximum 

returns obtained between the different structures of RNA models. 
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3. Conclusions 

During the development of this work, the application of artificial neural networks and 

quadratic programming in the management of financial portfolios has been addressed. 

Through a careful characterization of financial time series, it was possible to understand the 

importance of analysing their characteristics and patterns to make more accurate forecasts. 

Different configurations of artificial neural network models, made up of the combination 

of convolutional layers and LSTM, were evaluated, which differed in the number of historical 

observations they would use as inputs before making a prediction. The predictions obtained 

from the aforementioned models were compared with predictions obtained by using the 

arithmetic mean, which is one of the most commonly used indicators. As a result of the 

aforementioned comparison, it was obtained that the models depending on the number of 

observations that they used as inputs: 1, 2 or 3; they obtained an R2 of: -0.00287, 0.0611 

and 0.0179, respectively. 

The predictions obtained, both with the RNA models and with the arithmetic means 

together with the historical behaviours were used to, through the use of quadratic 

programming, search for the composition of lower risk portfolios. After carrying out a portfolio 

management simulation, it was obtained that the portfolios made up from the predictions of 

the ANN models obtained at the end of the period studied, compared to those made up of 

the predictions using the arithmetic mean, returns: 5.63% higher , for models that used 1 

observation as input; 35.67% higher for those who used 2; and 25.51% for those who used 

3. In addition, it was observed that the portfolios made up of the RNA models obtained 

returns higher than the index, IBEX, by 40.86%, 39.78% and 60.54%, for the models that 

used 1, 2 and 3 observations as inputs, respectively. 

The aforementioned results show that the combined use of these tools, ANN, and 

quadratic programming, can offer companies and organizations a significant competitive 

advantage in the management of their financial assets, allowing more effective decision-

making, optimizing the composition of portfolios, and maximizing returns. 
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However, it is important to highlight that the results presented in this paper need a more 

in-depth study to analyse, among other aspects, the weight that the results of the predictions 

of the different companies have in the composition of portfolios. For this reason, this work is 

considered the beginning of a more exhaustive investigation in which: higher quality data 

must be obtained, and the use of various techniques will be contrasted, both to obtain 

predictions and to find the composition of the portfolio adequate. 
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Annex 

Annexo.1 Figures 

Figure 1: Relation between IA-ML-DL  

  

Taken from: Deep learning with R by Chollet y Allaire (2018). 

Figure 2: Classic programming and machine learning  

  

 

Taken from: Deep learning with R by Chollet y Allaire (2018). 
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Figure 3: Basic structure of an artificial neural network  

 

Taken from: Topic 14: neural networks by Larrañaga (2007). 

Figure 4: How the size of the filter affects the output vector  

 

Own elaboration: Elaborated from Jing (2020). Shows how the size of the output vector changes according 

to the size of the filter that is used. 

https://private-user-images.githubusercontent.com/72680874/286603864-d5a9875d-1f04-4cfd-8350-20487a8d0cba.gif?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9..Sg8fab-0XiQebpA5KDzTPEZC1RbriUHMZoITbvJjs5Q
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Figure 5: How stride affects the output vector  

 

Own elaboration: Elaborated from Jing (2020). Shows how the stride parameter affects the size of the 

output vector. 

Figure 6: How dilation affects the output vector  

 

Own elaboration: Elaborated from Jing (2020). Show how the dilation parameter affects the size of the 

output vector. 

https://private-user-images.githubusercontent.com/72680874/286604228-c80e03ba-6098-4dc0-8a71-09912f759507.gif?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9..u_J9aMgHeqj59TTk8HlFX32LYBrZxd3j8oF4bOm1NdU
https://private-user-images.githubusercontent.com/72680874/286606655-688997c1-2c69-4b8d-88f1-cc5edd05ab55.gif?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9..Yjc2szD1H6-i1okb1GOo4mS7WpWoAYac-XpIstOXZm8
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Figure 7: How padding affects the output vector  

 

Own elaboration: Elaborated from Jing (2020). Show how the padding parameter affects the size of the 

output vector. 

Figure 8: Deployment of the loop of a standard recurrent neural network  

 

Taken from: Understanding LSTM networks, Olah (2015). 

Figure 9: Nearby relevant information 

 

https://private-user-images.githubusercontent.com/72680874/286607223-f5b4c1ef-a32b-44b0-8b85-9316fc776f9b.gif?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9..l5thzjE7NzTbHU2f_yPaTrCeYLDnrM7CXtdF9PHoLY8
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Taken from: Understanding LSTM networks, Olah (2015). 

Figure 10: Distant relevant information  

 

Taken from: Understanding LSTM networks, Olah (2015). 

Figure 11: Difference Between Repeat Modules  

 

Taken from: Understanding LSTM networks, Olah (2015). 

Figure 12: LSTM functionality: Representation of step 1 
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Taken from: Understanding LSTM networks, Olah (2015). 

Figure 13: LSTM functionality: Representation of step 2 

 
 

Taken from: Understanding LSTM networks, Olah (2015). 

Figure 14: LSTM functionality: Representation of step 3 

 

Taken from: Understanding LSTM networks, Olah (2015). 

Figure 15: LSTM functionality: Representation of step 4 
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Taken from: Understanding LSTM networks, Olah (2015). 

Figure 16: Input and output vector display 

 

Own elaboration: Made from an image in Chollet and Allaire (2018). It shows what the three-dimensional 

input and output vectors for a company’s data look like, if three observations are used to create the input vector. 

Figure 17: Different structures depending on the different sizes of input vectors  

  

Own elaboration: Elaborated from the different models built using the keras and tensorflow packages in R 

and were graphed using the Diagrammer package by Iannone (2023). 

  

https://private-user-images.githubusercontent.com/72680874/286607786-2794e6f1-fe9d-4f8e-82c0-b10f31904b29.gif?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9..wgXhLWGmpBkjAsTM3WrjQMrE4lDoIlfBAQUnX47HbnU
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Figure 18: ReLU and Leaky ReLU domain  

  

Own elaboration: Elaborated from the images that can be seen in Rallabandi (2023).  

Figure 19: Flowchart of the Walk Forward Validation methodology 

 

Own elaboration 
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Annex.2 Graphs 

Graph 1: Bullish and heteroscedastic trend 

 

Own elaboration: By using RStudio with the IBEX historical database, obtained from 

https://finance.yahoo.com/, in the period between 01-1995 to 01-1997. 

Graph 2: Bearish and heteroscedastic trend 

 

Own elaboration: Through the use of RStudio with the IBEX historical database, obtained from 

https://finance.yahoo.com/, in the period between 01-2000 to 01-2003. 
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Graph 3: No trend, homoscedastic and stationary 

 

Own elaboration: By using RStudio with the IBEX historical database obtained from 

https://finance.yahoo.com/, in the period from 01-2000 to 01-2003, using the returns calculated from the closing 

price. 

Graph 4: Decomposition: seasonality and error 

 

Own elaboration: By using RStudio with the IBEX historical database obtained from 

https://finance.yahoo.com/, decomposing the time series made up of the observations that cover the period from 

01-2000 to 01-2023. 



 

David Díaz Rodríguez  

66 

Application of artificial neural networks and quadratic programming in portfolio management  

Graph 5: Correlogram 

 

Own elaboration: By using RStudio. 

Graph 6: Constant trend in the adjusted closing prices of the company “Nueva Expresión Textil S.A” 

 

Own elaboration: Based on the data obtained from (n.d.) corresponding to the company “Nueva Expresión 

Textil S.A” in the period from January 31, 2000, to February 28, 2023. 
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Graph 7: Sudden price changes that reflect an erroneous calculation of adjusted closing prices, 

“BANKINTER,S.A.”  

 

Own elaboration: Based on the data obtained from (n.d.) corresponding to the company “Nueva Expresión 

Textil S.A” in the period from January 31, 2000, to February 28, 2023. 

Graph 8: Evolution of indicators – Entries with one observation 

 

Own elaboration: Through the use of R and Rstudio. 
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Graph 9: Evolution of the indicators – Entries with two observations 

 

Own elaboration: Through the use of R and Rstudio. 

Graph 10: Evolution of the indicators – Entries with three observations 

 

Own elaboration: Through the use of R and Rstudio. 
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Graph 11: Evolution of portfolios and the IBEX – Entries with one observation 

 

Own elaboration: Through the use of R and Rstudio. 

Graph 12: Evolution of the portfolios and the IBEX – Entries with two observations 

 

Own elaboration: Through the use of R and Rstudio. 
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Graph 13: Evolution of the portfolios and the IBEX – Entries with three observations 

 

Own elaboration: Through the use of R and Rstudio. 
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Annex.3 Tables 

Table 1: Price data structure 

Date Open High Low Close Volume Adjusted 

2001-05-24 3.600 3.620 3.510 3.608 216270100 -0.1317839 

2001-05-25 3.600 3.676 3.580 3.602 50448300 -0.1315648 

2001-05-28 3.560 3.604 3.544 3.580 26118945 -0.1307612 

2001-05-29 3.562 3.626 3.562 3.614 26910070 -0.1320031 

2001-05-30 3.606 3.648 3.602 3.620 48229995 -0.1322222 

2001-05-31 3.620 3.676 3.610 3.670 24806710 -0.1340484 

Own elaboration: Through the use of RStudio with the historical database of “INDITEX”, obtained from 

https://finance.yahoo.com/, in the period between 05-24-2001 to 05-31-2001. 
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Table 2: List of listed companies 

NAME TICKERS SECTOR-SUBSECTOR MARKET INDEX SELECTED 

ACCIONA,S.A. ANA.MC Mat.Basicos, Industria y Construcción - Construcción Mercado Continuo IBEX 35®, IGBM X 

ACERINOX, S.A. ACX.MC Mat.Basicos, Industria y Construcción - Mineral, 

Metales y Transformación 

Mercado Continuo IBEX 35®, IGBM, 

IBEXTD® 

X 

ACS,ACTIVIDADES DE 

CONST.Y SERVICIOS S.A 

ACS.MC Mat.Basicos, Industria y Construcción - Construcción Mercado Continuo IBEX 35®, IGBM, 

IBEXTD® 

X 

ADOLFO DOMINGUEZ, S.A. ADZ.MC Bienes de Consumo - Textil, Vestido y Calzado Mercado Continuo IGBM X 

AEDAS HOMES, S.A. AEDAS.M

C 

Servicios Inmobiliarios - Inmobiliarias y Otros Mercado Continuo IGBM X 

AENA, S.M.E., S.A. AENA.MC Servicios de Consumo - Transporte y Distribución Mercado Continuo IBEX 35®, IGBM X 

AIRBUS SE AIR.MC Mat.Basicos, Industria y Construcción - Aerospacial Mercado Continuo IGBM X 

AIRTIFICIAL INTELLIGENCE 

STRUCTURES S.A. 

AI.MC Mat.Basicos, Industria y Construcción - Ingeniería y 

Otros 

Mercado Continuo IGBM  

ALANTRA PARTNERS, S.A. ALNT.MC Servicios Financieros - Cartera y Holding Mercado Continuo IGBM  

ALMIRALL, S.A. ALM.MC Bienes de Consumo - Productos farmacéuticos y 

Biotecnología 

Mercado Continuo IGBM X 

AMADEUS IT GROUP, S.A. AMS.MC Tecnología y Telecomunicaciones - Electrónica y 

Software 

Mercado Continuo IBEX 35®, IGBM X 

AMPER, S.A. AMP.MC Tecnología y Telecomunicaciones - Electrónica y 

Software 

Mercado Continuo IGBM X 

AMREST HOLDINGS, S.E. EAT.MC Servicios de Consumo - Ocio, Turismo y Hostelería Mercado Continuo IGBM X 

APERAM, SOCIETE 

ANONYME 

APAM.MC Mat.Basicos, Industria y Construcción - Mineral, 

Metales y Transformación 

Mercado Continuo  X 
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NAME TICKERS SECTOR-SUBSECTOR MARKET INDEX SELECTED 

APPLUS SERVICES, S.A. APPS.MC Mat.Basicos, Industria y Construcción - Ingeniería y 

Otros 

Mercado Continuo IGBM X 

ARCELORMITTAL, S.A. MTS.MC Mat.Basicos, Industria y Construcción - Mineral, 

Metales y Transformación 

Mercado Continuo IBEX 35®, IGBM X 

ÁRIMA REAL ESTATE 

SOCIMI, S.A. 

ARM.MC Servicios Inmobiliarios - SOCIMI Mercado Continuo IGBM X 

ATRESMEDIA CORP. DE 

MEDIOS DE COM. S.A. 

A3M.MC Servicios de Consumo - Medios de Comunicación y 

Publicidad 

Mercado Continuo IGBM X 

ATRYS HEALTH, S.A. ATRY.MC Bienes de Consumo - Productos farmacéuticos y 

Biotecnología 

Mercado Continuo IGBM X 

AUDAX RENOVABLES, S.A. ADX.MC Petróleo y Energía - Energías Renovables Mercado Continuo IGBM  

AZKOYEN S.A. AZK.MC Mat.Basicos, Industria y Construcción - Fabric. y 

Montaje Bienes de Equipo 

Mercado Continuo IGBM X 

BANCO BILBAO VIZCAYA 

ARGENTARIA, S.A. 

BBVA.MC Servicios Financieros - Bancos y Cajas de Ahorro Mercado Continuo IBEX 35®, IGBM X 

BANCO DE SABADELL, S.A. SAB.MC Servicios Financieros - Bancos y Cajas de Ahorro Mercado Continuo IBEX 35®, IGBM X 

BANCO SANTANDER, S.A. SAN.MC Servicios Financieros - Bancos y Cajas de Ahorro Mercado Continuo IBEX 35®, IGBM X 

BANKINTER,S.A. BKT.MC Servicios Financieros - Bancos y Cajas de Ahorro Mercado Continuo IBEX 35®, IGBM, 

IBEXTD® 

X 

BERKELEY ENERGIA 

LIMITED 

BKY.MC Mat.Basicos, Industria y Construcción - Mineral, 

Metales y Transformación 

Mercado Continuo IGBM X 

BODEGAS RIOJANAS, S.A. RIO.MC Bienes de Consumo - Alimentación y Bebidas Mercado Continuo IGBM X 

BORGES AGRICULTURAL & 

INDUST. NUTS, S.A. 

BAIN.MC Bienes de Consumo - Alimentación y Bebidas Mercado Continuo   
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NAME TICKERS SECTOR-SUBSECTOR MARKET INDEX SELECTED 

CAIXABANK, S.A. CABK.MC Servicios Financieros - Bancos y Cajas de Ahorro Mercado Continuo IBEX 35®, IGBM X 

CAJA DE AHORROS DEL 

MEDITERRANEO 

CAM.MC Servicios Financieros - Bancos y Cajas de Ahorro Mercado Continuo   

CASH, S.A. CASH.MC Servicios de Consumo - Otros Servicios Mercado Continuo IGBM, IBEXTD® X 

CELLNEX TELECOM, S.A. CLNX.MC Tecnología y 

Telecomunicaciones - Telecomunicaciones y Otros 

Mercado Continuo IBEX 35®, IGBM X 

CIA. DE DIST. INTEG. 

LOGISTA HOLDINGS 

LOG.MC Servicios de Consumo - Transporte y Distribución Mercado Continuo IBEX 35®, IGBM, 

IBEXTD® 

X 

CIA. ESPAÑOLA VIVIENDAS 

EN ALQUILER,S.A 

CEV.MC Servicios Inmobiliarios - Inmobiliarias y Otros Mercado Continuo   

CIA.LEVANTINA, 

EDIFICACION DE 

O.PUBLICAS 

CLEO.MC Mat.Basicos, Industria y Construcción - Construcción Mercado Continuo   

CIE AUTOMOTIVE, S.A. CIE.MC Mat.Basicos, Industria y Construcción - Mineral, 

Metales y Transformación 

Mercado Continuo IGBM X 

CLINICA BAVIERA, S.A. CBAV.MC Servicios de Consumo - Otros Servicios Mercado Continuo IGBM X 

COCA-COLA EUROPACIFIC 

PARTNERS PLC 

CCEP.MC Bienes de Consumo - Alimentación y Bebidas Mercado Continuo IGBM X 

CONSTRUCC. Y AUX. DE 

FERROCARRILES, S.A. 

CAF.MC Mat.Basicos, Industria y Construcción - Fabric. y 

Montaje Bienes de Equipo 

Mercado Continuo IGBM X 

CORP. ACCIONA 

ENERGÍAS RENOVABLES, 

S.A. 

ANE.MC Petróleo y Energía - Energías Renovables Mercado Continuo IBEX 35®, IGBM X 
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NAME TICKERS SECTOR-SUBSECTOR MARKET INDEX SELECTED 

CORPORACION 

FINANCIERA ALBA, S.A. 

ALB.MC Servicios Financieros - Cartera y Holding Mercado Continuo IGBM X 

DEOLEO, S.A. OLE.MC Bienes de Consumo - Alimentación y Bebidas Mercado Continuo IGBM X 

DESA DESA.MC Mat.Basicos, Industria y Construcción - Mineral, 

Metales y Transformación 

Mercado Continuo   

DIA-DISTRIBUIDORA INT. 

DE ALIMENT. S.A. 

DIA.MC Servicios de Consumo - Comercio Mercado Continuo IGBM X 

DURO FELGUERA, S.A. MDF.MC Mat.Basicos, Industria y Construcción - Ingeniería y 

Otros 

Mercado Continuo IGBM X 

EBRO FOODS, S.A. EBRO.MC Bienes de Consumo - Alimentación y Bebidas Mercado Continuo IGBM, IBEXTD® X 

EDREAMS ODIGEO, S.A. EDR.MC Servicios de Consumo - Ocio, Turismo y Hostelería Mercado Continuo IGBM X 

ELECNOR S. A. ENO.MC Mat.Basicos, Industria y Construcción - Fabric. y 

Montaje Bienes de Equipo 

Mercado Continuo IGBM, IBEXTD® X 

ENAGAS, S.A. ENG.MC Petróleo y Energía - Electricidad y Gas Mercado Continuo IBEX 35®, IGBM, 

IBEXTD® 

X 

ENCE ENERGIA Y 

CELULOSA, S.A. 

ENC.MC Bienes de Consumo - Papel y Artes Gráficas Mercado Continuo IGBM X 

ENDESA, SOCIEDAD 

ANONIMA 

ELE.MC Petróleo y Energía - Electricidad y Gas Mercado Continuo IBEX 35®, IGBM, 

IBEXTD® 

X 

ERCROS S.A. ECR.MC Mat.Basicos, Industria y Construcción - Industria 

Química 

Mercado Continuo IGBM X 

FAES FARMA, S.A. FAE.MC Bienes de Consumo - Productos farmacéuticos y 

Biotecnología 

Mercado Continuo IGBM, IBEXTD® X 

FERROVIAL, S.A. FER.MC Mat.Basicos, Industria y Construcción - Construcción Mercado Continuo IBEX 35®, IGBM X 
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NAME TICKERS SECTOR-SUBSECTOR MARKET INDEX SELECTED 

FLUIDRA, S.A. FDR.MC Mat.Basicos, Industria y Construcción - Ingeniería y 

Otros 

Mercado Continuo IBEX 35®, IGBM X 

FOMENTO DE CONSTR. Y 

CONTRATAS S.A. 

FCC.MC Mat.Basicos, Industria y Construcción - Construcción Mercado Continuo IGBM, IBEX TOP 

Dividendo® 

X 

GENERAL DE ALQUILER DE 

MAQUINARIA, S.A. 

GAM.MC Mat.Basicos, Industria y Construcción - Ingeniería y 

Otros 

Mercado Continuo IGBM  

GESTAMP AUTOMOCION, 

S.A. 

GEST.MC Mat.Basicos, Industria y Construcción - Fabric. y 

Montaje Bienes de Equipo 

Mercado Continuo IGBM X 

GLOBAL DOMINION 

ACCESS, S.A. 

DOM.MC Tecnología y 

Telecomunicaciones - Telecomunicaciones y Otros 

Mercado Continuo IGBM X 

GRENERGY RENOVABLES, 

S.A. 

GRE.MC Petróleo y Energía - Energías Renovables Mercado Continuo IGBM X 

GRIFOLS, S.A. GRF.MC Bienes de Consumo - Productos farmacéuticos y 

Biotecnología 

Mercado Continuo IBEX 35®, IGBM X 

GRUPO CATALANA 

OCCIDENTE, S.A. 

GCO.MC Servicios Financieros - Seguros Mercado Continuo IGBM X 

GRUPO ECOENER, S.A. ENER.MC Petróleo y Energía - Energías Renovables Mercado Continuo IGBM X 

GRUPO EMPRESARIAL SAN 

JOSE, S.A. 

GSJ.MC Mat.Basicos, Industria y Construcción - Construcción Mercado Continuo IGBM X 

GRUPO EZENTIS, S.A. EZE.MC Tecnología y 

Telecomunicaciones - Telecomunicaciones y Otros 

Mercado Continuo  X 

IBERDROLA, S.A. IBE.MC Petróleo y Energía - Electricidad y Gas Mercado Continuo IBEX 35®, IGBM, 

IBEXTD® 

X 

IBERPAPEL GESTION, S.A. IBG.MC Bienes de Consumo - Papel y Artes Gráficas Mercado Continuo IGBM X 
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NAME TICKERS SECTOR-SUBSECTOR MARKET INDEX SELECTED 

INDRA SISTEMAS, S.A., 

SERIE A 

IDR.MC Tecnología y Telecomunicaciones - Electrónica y 

Software 

Mercado Continuo IBEX 35®, IGBM X 

INDUSTRIA DE DISEÑO 

TEXTIL, SA “INDITEX” 

ITX.MC Bienes de Consumo - Textil, Vestido y Calzado Mercado Continuo IBEX 35®, IGBM X 

INMOBILIARIA COLONIAL 

SOCIMI, S.A. 

COL.MC Servicios Inmobiliarios - SOCIMI Mercado Continuo IBEX 35®, IGBM X 

INMOBILIARIA DEL SUR, 

S.A. 

ISUR.MC Servicios Inmobiliarios - Inmobiliarias y Otros Mercado Continuo IGBM X 

INNOVATIVE SOLUTIONS 

ECOSYSTEM, S.A. 

ISE.MC Servicios de Consumo - Comercio Mercado Continuo   

INTERNATIONAL 

CONSOLIDAT. AIRLINES 

GROUP 

IAG.MC Servicios de Consumo - Transporte y Distribución Mercado Continuo IBEX 35®, IGBM X 

LABORATORIO REIG 

JOFRE, S.A. 

RJF.MC Bienes de Consumo - Productos farmacéuticos y 

Biotecnología 

Mercado Continuo IGBM X 

LABORATORIOS 

FARMACEUTICOS ROVI, 

S.A. 

ROVI.MC Bienes de Consumo - Productos farmacéuticos y 

Biotecnología 

Mercado Continuo IBEX 35®, IGBM X 

LAR ESPAÑA REAL 

ESTATE, SOCIMI, S.A. 

LRE.MC Servicios Inmobiliarios - SOCIMI Mercado Continuo IGBM, IBEXTD® X 

LIBERTAS 7, S.A. LIB.MC Servicios Inmobiliarios - Inmobiliarias y Otros Mercado Continuo   

LINEA DIRECTA 

ASEGURADORA, S.A. 

LDA.MC Servicios Financieros - Seguros Mercado Continuo IGBM X 

LINGOTES ESPECIALES, 

S.A. 

LGT.MC Mat.Basicos, Industria y Construcción - Mineral, 

Metales y Transformación 

Mercado Continuo  X 
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NAME TICKERS SECTOR-SUBSECTOR MARKET INDEX SELECTED 

MAPFRE, S.A. MAP.MC Servicios Financieros - Seguros Mercado Continuo IBEX 35®, IGBM, 

IBEXTD® 

X 

MELIA HOTELS 

INTERNATIONAL, S.A. 

MEL.MC Servicios de Consumo - Ocio, Turismo y Hostelería Mercado Continuo IBEX 35®, IGBM X 

MERLIN PROPERTIES, 

SOCIMI, S.A. 

MRL.MC Servicios Inmobiliarios - SOCIMI Mercado Continuo IBEX 35®, IGBM, 

IBEXTD® 

X 

METROVACESA, S.A. MVC.MC Servicios Inmobiliarios - Inmobiliarias y Otros Mercado Continuo IGBM X 

MIQUEL Y COSTAS & 

MIQUEL, S.A. 

MCM.MC Bienes de Consumo - Papel y Artes Gráficas Mercado Continuo IGBM, IBEXTD® X 

MONTEBALITO, S.A. MTB.MC Servicios Inmobiliarios - Inmobiliarias y Otros Mercado Continuo  X 

NATURGY ENERGY 

GROUP, S.A. 

NTGY.MC Petróleo y Energía - Electricidad y Gas Mercado Continuo IBEX 35®, IGBM, 

IBEXTD® 

X 

NATURHOUSE HEALTH, 

S.A. 

NTH.MC Bienes de Consumo - Alimentación y Bebidas Mercado Continuo IGBM X 

NEINOR HOMES, S.A. HOME.MC Servicios Inmobiliarios - Inmobiliarias y Otros Mercado Continuo IGBM X 

NH HOTEL GROUP, S.A. NHH.MC Servicios de Consumo - Ocio, Turismo y Hostelería Mercado Continuo IGBM X 

NICOLAS CORREA S.A. NEA.MC Mat.Basicos, Industria y Construcción - Fabric. y 

Montaje Bienes de Equipo 

Mercado Continuo IGBM, IBEXTD® X 

NUEVA EXPRESION 

TEXTIL, S.A. 

NXT.MC Bienes de Consumo - Textil, Vestido y Calzado Mercado Continuo IGBM  

NYESA VALORES 

CORPORACION, S.A. 

NYE.MC Servicios Inmobiliarios - Inmobiliarias y Otros Mercado Continuo IGBM  

OBRASCON HUARTE LAIN, 

S.A. 

OHLA.MC Mat.Basicos, Industria y Construcción - Construcción Mercado Continuo IGBM X 
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NAME TICKERS SECTOR-SUBSECTOR MARKET INDEX SELECTED 

OPDENERGY HOLDING, 

S.A. 

OPDE.MC Petróleo y Energía - Energías Renovables Mercado Continuo IGBM X 

ORYZON GENOMICS, S.A. ORY.MC Bienes de Consumo - Productos farmacéuticos y 

Biotecnología 

Mercado Continuo IGBM X 

PESCANOVA, S.A. PVA.MC Bienes de Consumo - Alimentación y Bebidas Mercado Continuo IGBM  

PHARMA MAR, S.A. PHM.MC Bienes de Consumo - Productos farmacéuticos y 

Biotecnología 

Mercado Continuo IGBM X 

PRIM, S.A. PRM.MC Bienes de Consumo - Productos farmacéuticos y 

Biotecnología 

Mercado Continuo IGBM X 

PROMOTORA DE 

INFORMACIONES,S.A. 

PRS.MC Servicios de Consumo - Medios de Comunicación y 

Publicidad 

Mercado Continuo IGBM X 

PROSEGUR , CIA. DE 

SEGURIDAD, S.A. 

PSG.MC Servicios de Consumo - Otros Servicios Mercado Continuo IGBM, IBEXTD® X 

REALIA BUSINESS, S.A. RLIA.MC Servicios Inmobiliarios - Inmobiliarias y Otros Mercado Continuo IGBM X 

RED ELECTRICA 

CORPORACION, S.A. 

RED.MC Petróleo y Energía - Electricidad y Gas Mercado Continuo IBEX 35®, IGBM, 

IBEXTD® 

X 

RENTA 4 BANCO, S.A. R4.MC Servicios Financieros - Servicios de Inversión Mercado Continuo IGBM X 

RENTA CORPORACION 

REAL ESTATE, S.A. 

REN.MC Servicios Inmobiliarios - Inmobiliarias y Otros Mercado Continuo IGBM  

REPSOL, S.A. REP.MC Petróleo y Energía - Petróleo Mercado Continuo IBEX 35®, IGBM, 

IBEXTD® 

X 

SACYR, S.A. SCYR.MC Mat.Basicos, Industria y Construcción - Construcción Mercado Continuo IBEX 35®, IGBM, 

IBEXTD® 

X 
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NAME TICKERS SECTOR-SUBSECTOR MARKET INDEX SELECTED 

SOLARIA ENERGIA Y 

MEDIO AMBIENTE, S.A. 

SLR.MC Petróleo y Energía - Energías Renovables Mercado Continuo IBEX 35®, IGBM X 

SOLTEC POWER 

HOLDINGS, S.A. 

SOL.MC Petróleo y Energía - Energías Renovables Mercado Continuo IGBM X 

SQUIRREL MEDIA, S.A SQRL.MC Servicios de Consumo - Medios de Comunicación y 

Publicidad 

Mercado Continuo   

TALGO, S.A. TLGO.MC Mat.Basicos, Industria y Construcción - Fabric. y 

Montaje Bienes de Equipo 

Mercado Continuo IGBM X 

TECNICAS REUNIDAS, S.A. TRE.MC Mat.Basicos, Industria y Construcción - Ingeniería y 

Otros 

Mercado Continuo IGBM X 

TELEFONICA, S.A. TEF.MC Tecnología y 

Telecomunicaciones - Telecomunicaciones y Otros 

Mercado Continuo IBEX 35®, IGBM, 

IBEXTD® 

X 

TUBACEX, S.A. TUB.MC Mat.Basicos, Industria y Construcción - Mineral, 

Metales y Transformación 

Mercado Continuo IGBM X 

TUBOS REUNIDOS,S.A. TRG.MC Mat.Basicos, Industria y Construcción - Mineral, 

Metales y Transformación 

Mercado Continuo IGBM X 

UNICAJA BANCO, S.A. UNI.MC Servicios Financieros - Bancos y Cajas de Ahorro Mercado Continuo IBEX 35®, IGBM X 

URBAS GRUPO 

FINANCIERO, S.A. 

UBS.MC Servicios Inmobiliarios - Inmobiliarias y Otros Mercado Continuo IGBM  

VIDRALA S.A. VID.MC Bienes de Consumo - Otros Bienes de Consumo Mercado Continuo IGBM X 

VISCOFAN, S.A. VIS.MC Bienes de Consumo - Alimentación y Bebidas Mercado Continuo IGBM, IBEXTD® X 

VOCENTO, S.A. VOC.MC Servicios de Consumo - Medios de Comunicación y 

Publicidad 

Mercado Continuo IGBM X 

Obtained from: The information displayed on the official site of the Spanish Stock Exchanges and Markets, “Empresas Cotizadas”. 
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Table 3: Amounts of samples used to train the models 

Inputs Total.samples 

1 17347 

2 17244 

3 17141 

Own elaboration. 

Table 4: Best and best companies according to the results obtained from the calculations of the indicators 

1 2 3 

TICKER R2 MSE TICKER R2 MSE TICKER R2 MSE 

OPDE.MC 0.4980 0.01400 OPDE.MC 0.3890 0.01190 OPDE.MC 0.4890 0.01220 

OLE.MC 0.1410 0.20900 SOL.MC 0.3040 0.02260 ANE.MC 0.3490 0.00635 

ANE.MC 0.1070 0.00662 ANE.MC 0.1970 0.00649 SOL.MC 0.3160 0.02080 

DOM.MC 0.1030 0.00555 BKY.MC 0.1690 0.18700 BKY.MC 0.1980 0.20200 

MVC.MC 0.1010 0.00959 TLGO.MC 0.1390 0.00876 LOG.MC 0.1930 0.00451 

BKY.MC 0.0612 0.20700 OLE.MC 0.1080 0.20400 LDA.MC 0.1500 0.00351 

TLGO.MC 0.0586 0.00916 AEDAS.MC 0.1070 0.00693 TLGO.MC 0.1170 0.00813 

MRL.MC 0.0559 0.00623 MVC.MC 0.0990 0.00980 OLE.MC 0.0677 0.20700 

AEDAS.MC 0.0505 0.00721 ENER.MC 0.0977 0.00984 CBAV.MC 0.0590 0.01160 

NTH.MC 0.0497 0.01080 CCEP.MC 0.0865 0.00412 ENER.MC 0.0524 0.01120 

EBRO.MC -0.1130 0.00265 AENA.MC -0.0116 0.00595 BBVA.MC -0.1020 0.01060 

VID.MC -0.1180 0.00547 PRS.MC -0.0147 0.02740 SAN.MC -0.1060 0.01010 

AMS.MC -0.1200 0.00618 DIA.MC -0.0251 0.02180 EBRO.MC -0.1100 0.00262 

ATRY.MC -0.1370 0.01230 RIO.MC -0.0251 0.00296 RED.MC -0.1310 0.00389 

ENER.MC -0.1390 0.01250 VIS.MC -0.0289 0.00345 MVC.MC -0.1330 0.01250 

PRM.MC -0.1690 0.00731 TEF.MC -0.0294 0.00542 RIO.MC -0.1360 0.00329 

APPS.MC -0.2300 0.00809 ITX.MC -0.0311 0.00778 ALB.MC -0.1490 0.00521 

R4.MC -0.2790 0.00227 GRE.MC -0.0457 0.02860 IBE.MC -0.1520 0.00563 

VIS.MC -0.2860 0.00429 ATRY.MC -0.1520 0.01250 HOME.MC -0.1530 0.00740 

LDA.MC -0.3180 0.00543 LDA.MC -0.1580 0.00430 VIS.MC -0.1830 0.00398 

Own elaboration. 
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Annex.4 Codes 

The code used to conduct the procedure described in the development of the work is 

presented below. 

Data 

Data Collection 

The first thing that was done was to load the table of companies. 

R 
empresas <- read_excel("data/000_empresas.xlsx") 

Then the ticks of the companies were extracted. 

R 
ticks <- empresas |>  
  select(TICKERS) |>  
  pull() 

Once the ticks of the companies were stored in the ticks variable, we proceeded to 

download the data corresponding to said companies from Yahoo Finance using the 

quantmod package from Ryan and Ulrich (2023). 

R 

nombres_colum <- 
c("Date","Open","High","Low","Close","Volume","Adjusted") 
qmd_data <- list() 
for (i in 1:length(ticks)) { 
  tick <- ticks[i] 
  value <- getSymbols( 
    tick, 
    from = "2000-01-02", 
    to = "2023-03-01", 
    auto.assign = F, 
    periodicity = "monthly") |> 
    as.data.frame() 
  dates <- row.names(value) 
  row.names(value) <- NULL 
  value <- cbind(dates,value) 
  names(value) <- nombres_colum 
  qmd_data[[tick]] <-  value 

} 
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With the objective of conducting an exploratory analysis of the data, it was decided to 

conduct a visual evaluation of the historical data of the adjusted price for what was executed: 

R 
lapply(qmd_data, function(x){ 
  x |> 
    ggplot(aes(x=as.Date(Date), y=Adjusted))+ 
             geom_line(color="#065AD8") 

}) 

After the visual analysis executed with the previous code fragment, the existence of 

constant prices was detected, as well as erroneous calculations in the adjusted price 

corresponding to the first years of some series. In order to eliminate these irregularities, only 

those observations after January 2005 were selected. 

R 
returns_emps <- qmd_data |> 
  lapply(function(x){ 
    emps <- x |> 
      filter(Date >= "2005-01-31") 

  }) 

In order to determine if the data that had been imported had missing values, the 

following code was executed: 

R 

na_values <- returns_emps |> 
  sapply(function(x){ 
    na <- length(which(is.na(x))) 
  }) 

emp_con_na <- which(na_values > 0) 

In order to solve the problem regarding the incorrect recording of the data, it was 

decided to eliminate those that did not present price variations in more than 10 observations. 

For which, the returns were first computed by executing the following code, through which 

the series with missing values were also eliminated. 
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R 
returns_emps2 <- returns_emps[-emp_con_na] |> 
  lapply(function(x){ 
    returns <- x |> 
      select(Date, Adjusted) |> 
      mutate(Return_Ad = Delt(Adjusted)[,1]) |> 
      na.omit() |> 
      select(Date, Return_Ad) 

  }) 

Once the returns were computed, those series that presented 0 returns in more than 

10 observations were eliminated, for which the following code was executed. 

R 
zero_values <- returns_emps2 |> 
  sapply(function(x){ 
    zeros <- length(which(x[,2]==0)) 
  }) 

returns_emps3 <- returns_emps2[zero_values<10] 

Indicators 

Below is the code used during the process described in the indicators sub-heading of 

chapter 2. 

First, the IBEX data were downloaded, the returns of the adjusted price of the same 

were computed and the values after January 2005 were selected. 

R 
#Importing IBEX 
IBEXsel <- getSymbols( 
  "^IBEX", 
  from = "1990-01-01", 
  to = "2023-03-01", 
  auto.assign = F, 
  periodicity = "monthly") |> 
  as.data.frame() 
dates <- row.names(IBEXsel) 
row.names(IBEXsel) <- NULL 
IBEXsel <- cbind(dates,IBEXsel) 
names(IBEXsel) <- nombres_colum 
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R 
# Calculating profitability and selecting observations after  
# January 2005. 
IBEXsel <- IBEXsel |> 
  mutate(Return_I = Delt(Adjusted)[,1]) |> 
  na.omit() |> 
  filter(Date >= "2005-01-31") |> 

  select(Date, Return_I) 

Then the values of the IBEX returns were added to the tables of the returns of the 

shares of the selected companies, and the variables listed below were computed and added 

to each of the tables: 

• Company volatility 

• Index volatility 

• Correlation between the profitability of the company and the index 

• The Beta between the company and the index 

R 
returns_indc <- returns_emps3 |> 
  lapply(function(x, ind = IBEXsel){ 
    emp <- x |> 
      left_join(ind) |> 
      mutate( 
        VE = sqrt(cumsum((Return_Ad - 
cummean(Return_Ad))^2)/1:length(Return_Ad)), 
        VI = sqrt(cumsum((Return_I - 
cummean(Return_I))^2)/1:length(Return_I)), 
        Cor = cumsum((Return_Ad-cummean(Return_Ad))*(Return_I-
cummean(Return_I)))/(sqrt(cumsum((Return_Ad-
cummean(Return_Ad))^2))*sqrt(cumsum((Return_I-cummean(Return_I))^2))) 
      )|> 
      na.omit() |> 
      mutate( 
        Beta = (Cor*VE)/VI 
      ) 

  }) 

Vectors 

Below is the code used during the process described in the sub-heading vectors of the 

heading modeling in Chapter 2. 
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The first step conducted for the execution of the process explained in the sub-section 

in question was to create a function that allowed obtaining the consecutive samples for each 

series used. The function exposed below, as already mentioned, allows obtaining the 

consecutive samples of a series, for which the parameters mentioned in the sub-heading 

are used, number of input observations and number of output observations, as well as a 

parameter conditional with which it is indicated if the vector to be created is input or output. 

R 
vector2dmaker <- function(vec, ent, sal, eos=T){ 
  if(eos==T){ 
    emp <- 1 
    term <- (length(vec) - (ent+sal-1)) 
    ob <- ent 
  }else{ 
    emp <- ent + 1 
    term <- (length(vec)-sal+1) 
    ob <- sal 
  } 
   
  vec2d <- sapply(emp:term, 
               function(x) vec[x:(x + ob-1)]) |> 
    matrix(nrow = ob) |> 
    t() 
   
  return(vec2d) 

} 

Below is the code used to create the input vectors corresponding to each of the series. 

For which two functions were first created, one for the inputs and the other for the outputs. 
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R 
# Function that will be used to create the three-dimensional inputs 
input3dmaker <- function(x,inp,out){ 
  empre <- x 
  series <- 2:dim(x)[2] 
  for (i in series) { 
    if(i==series[1]){ 
      vec3d <- vector2dmaker(empre[[i]],ent=inp,sal=out) 
    }else{ 
      vec3d <- abind(vec3d,vector2dmaker(empre[[i]],ent=inp,sal=out), 
along = 3) 
    } 
  } 
  return(vec3d) 
} 
 
# Function to be used to create the three-dimensional outputs 
output3dmaker <- function(x,inp,out){ 
  empre <- x[["Return_Ad"]] 
  vec3d <- vector2dmaker(empre,ent=inp,sal=out,F) 
  dim(vec3d) <- c(dim(vec3d),1) 
  return(vec3d) 

} 

Then the lists of three-dimensional vectors of inputs and outputs per company were 

created, executing the following code another two times with the aim of creating the lists 

vecs3d2e and vecs3d3e that correspond to those cases in which 2 and 3 inputs were 

selected. 

R 
# The time horizon is defined 
ht <- 1 
 
# The input observations are defined  
oe <- 1 
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R 

# 3d input vectors and 2d output vectors are created for input size 1 
vecs3d1e <- list() 
for(i in 1:length(returns_indc)){ 
  emp <- returns_indc[[i]] 
  inps <- input3dmaker(emp, oe, ht) 
  outs <- output3dmaker(emp, oe, ht) 
  dates <- emp[(oe + ht):dim(emp)[1],1] 
  id <- rep(names(returns_indc)[i],length(dates)) 
  tibblex <- tibble( 
    Date = dates, 
    ID = id, 
    inputs = inps, 
    outputs = outs 
  ) 
  vecs3d1e[[names(returns_indc)[i]]] <- tibblex 

} 

Modelling and training 

The code used during the process described in the different sub-sections of the 

Modelling and training section is presented below. 

Modelling 

For the creation of the models, the first step to execute is to obtain the information of 

the vectors for which the model is going to be built, which was done by executing the 

following code: 

R 

data <- bind_rows(vecs3d1e) 
data <- data  |> 
  arrange(Date) 
inputsinfo <- data|> 
  select(inputs) |> 
  pull() |> 
  dim() 
outputsinfo <- data|> 
  select(outputs) |> 
  pull() |> 
  dim() 

  



 

David Díaz Rodríguez  

89 

Application of artificial neural networks and quadratic programming in portfolio management  

R 
# Define parameters 
n_ob_pas <- inputsinfo[2] 
n_variables <- inputsinfo[3] 
n_ob_fut <- outputsinfo[2] 

Then the structure of the models was constituted with the aspects described in 2.5.1 

Modelling. 

R 
# Input layer 
inp <- layer_input( 
  shape = c(NULL,n_ob_pas,n_variables)) 
 
# Hidden layers 
# - CNN 
cnn <- inp |> 
  layer_conv_1d( 
    filters = 64, 
    kernel_size = 1, 
    activation = layer_activation_leaky_relu()) 
# - LSTM 
lstm <- cnn |> 
  layer_lstm(64) 
 
# Output layer 
out <- lstm |>  
  layer_dense( 
    n_ob_fut*1) 
 
# Join the layers to constitute the model  
model <- keras_model(inp, out) 
# Setting Learning parameters 
model |>  

  compile(loss = "mse", optimizer = optimizer_sgd(0.0005)) 

 

  Note 

 You can find untrained models in the data folder of the repository where this work is 

located. The models were saved using the hdf5 extension and under the 

names model1e, model2e and model3e 
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Training 

The first step is to define the function to use for training the models. This function was 

built with the goal of using the training method described in 2.5.2 Training. As a result, this 

function will return a list that will contain the predictions obtained and the model after having 

been trained and will take as main inputs the tibble called data constituted in the first step 

that is exposed in this annex’s section Modelling and the model as well. of other arguments 

that allow the use of the function with some main inputs that are not used in the present 

work. 

R 
wfv_train <- function(x, modelo, seq_var_name, inp_var_name = "inputs", 
out_var_name = "outputs", progress_bar=T){ 
   
  predictions <- c() 
  seq_val <- unique(x[[seq_var_name]]) 
   
  if(progress_bar){ 
    pb <- txtProgressBar(min = 0, max = length(seq_val), initial = 0, 
style = 3) 
  } 
   
   
  # Iteration that will be executed for each unique value in the variable 
  # that defines the data sequence. For this reason, it is of vital 
  # importance that the data in tibble x be ordered by the sequence 
  # variable whose name is passed to seq_var_name 
     
    for (i in 1:length(seq_val)) { 
    val_seq <- seq_val[i] 
 
    # Extract inputs and outputs corresponding to the period in the  
    # current sequence variable 
    inputs <- x |> 
      filter(!!sym(seq_var_name) == val_seq) |> 
      select(!!sym(inp_var_name)) |> 
      pull() 
    outputs <- x |> 
      filter(!!sym(seq_var_name) == val_seq) |> 
      select(!!sym(out_var_name)) |> 
      pull() 
    outputs <- outputs[,,1] 
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R 
    # Use inputs to get forecasts for all periods in the sequence  
    # variable except for the first 
    if(i > 1){ 
      pred <- modelo |> 
        predict(inputs, verbose = 3) 
      predictions <- rbind(predictions, pred) 
    } 
     
    # Train the model 
    modelo |> 
      fit( 
        inputs, 
        outputs, 
        epochs = 1, 
        batch_size = 10, 
        shuffle = F, 
        verbose = 0) 
     
    if(progress_bar){ 
      setTxtProgressBar(pb,i) 
      } 
     
  } 
   
  if(progress_bar){ 
    close(pb) 
  } 
   
  results <- list() 
  results[['predicciones']] <- predictions 
  results[['modelo']] <- modelo 
  return(results) 

} 

Once the function was created, the predictions were obtained using the following code: 

R 
resultados <- wfv_train(data,model,'Date') 

predicciones1e <- resultados$predicciones 
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  Note 

 You can find trained models in the data folder of the repository where this work is 

located. The models were saved using the hdf5 extension and under the 

names model1etd, model2etd and model3etd. 

As explained in 2.6.1 Predictions , in addition to the predictions obtained by the models, 

predictions obtained from the use of the arithmetic mean were computed, to compare with 

those obtained with the models. To compute these predictions, the following function was 

created: 

R 
wfv_means <- function(x, seq_var_name, inp_var_name = "inputs", 
out_var_name = "outputs", id_var_name, progress_bar=T){ 
   
  means <- c() 
  seq_val <- unique(x[[seq_var_name]]) 
   
  if(progress_bar){ 
    pb <- txtProgressBar(min = 0, max = length(seq_val), initial = 0, 
style = 3) 
  } 
   
  for (i in 1:length(seq_val)) { 
    val_seq <- seq_val[i] 
    inputs <- x |> 
      filter(!!sym(seq_var_name) == val_seq) |> 
      select(!!sym(inp_var_name)) |> 
      pull() 
    inputspred <- x |> 
      filter(!!sym(seq_var_name) == val_seq) |> 
      select(!!sym(inp_var_name)) |> 
      pull() 
    outputs <- x |> 
      filter(!!sym(seq_var_name) == val_seq) |> 
      select(!!sym(out_var_name)) |> 
      pull() 
    outputs <- outputs[,,1] 
     
    ids <- x |> 
      filter(!!sym(seq_var_name) == val_seq) |> 
      select(!!sym(id_var_name)) |> 
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      pull() 
     
    if(i==1){ 
      dfmeans <- inputs[,,1] |> 
        as.data.frame() |> 
        cbind(ID = ids) 
    }else{ 
      dfmeansupd <- inputs[,dim(inputs)[2],1] |> 
        as.data.frame() |> 
        cbind(ID = ids) 
      names(dfmeansupd)[1] <- paste0("V",(dim(dfmeans)[2])) 
      idsdf <- unique(c(ids, dfmeans[[id_var_name]])) 
      idsdf <- data.frame(ID = idsdf) 
      dfmeansupd <- dplyr::left_join(idsdf, dfmeansupd, by = "ID") 
      ifelse( 
        dim(dfmeansupd)[1] > dim(dfmeans)[1], 
        dfmeans <- dplyr::left_join(dfmeansupd, dfmeans, by = "ID"), 
        dfmeans <- dplyr::left_join(dfmeans, dfmeansupd, by = "ID") 
        ) 
    } 
     
    if(i > 1){ 
      MEANS <-  dfmeans |> 
        rowwise() |> 
        mutate( 
          means = mean(c_across(-!!sym(id_var_name)), na.rm = T)) |> 
        slice(match(ids,!!sym(id_var_name))) |> 
        pull(means) |> 
        as.matrix() 
      means <- rbind(means, MEANS) 
    } 
     
    if(progress_bar){ 
      setTxtProgressBar(pb,i) 
    } 
     
  } 
   
  if(progress_bar){ 
    close(pb) 
  } 
   
  return(means) 

} 

Once the function was created, the predictions were obtained using the following code: 
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R 

meanse1 <- wfv_means(data,'Date',id_var_name = "ID") 

 

  Nota 

 In addition to what was previously stated, two functions getconfig and plot_modelk were 

created, in the .Rprofile file of the repository in which this work is found, which allow 

graphing the structure of the models by using the package Diagrammer by 

Iannone(2023), as seen in the Figure 17. The code to use would be: 

R 
# The functions are created to graph the structures used in this work. 
model |> 
  getconfig() |> 
  plot_modelk() |> 
  grViz() 

 

The procedure exposed in the sections Modelling and Training of this annex was 

repeated to build the 10 models made from each group of three-dimensional vectors, 

replacing the call to vecs3d1e with in the first code exposed. vecs3d2e and vecs3d3e, 

depending on the group of three-dimensional vectors used. 

Result 

The code used during the process described in the different sub-sections of the Result 

section is presented below. 

Predictions 

The analysis exposed in 2.6.1 Predictions was carried out from graphs (see Graph 8, 

Graph 9 and Graph 10), which show the values of the 𝑀𝑆𝐸 and 𝑅2 indicators for each of the 

tested structures. 

The first step to obtain these graphs was to compute the indicators, for each period of 

time, for each of the predictions obtained from the different models built with each structure. 

This is done using the following code. 

R 
# Extract actual outputs 
salidas <- data |> 
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  filter( 
    Date > data$Date[1] 
  ) |> 
  select(outputs) |> 
  pull() 
salidas <- salidas[,,1] 
 
# Compute MSE and R2 indicators 
indicadores <- data |> 
  filter(Date > data$Date[1]) |> 
  cbind(predicciones = predicciones1e[,1]) |> 
  cbind(means = meanse1) |> 
  mutate(salidas = salidas) |> 
  select(Date, predicciones, means, salidas) |> 
  group_by(Date) |> 
  summarise( 
    r2 = 1 - (sum((salidas - predicciones)^2)/sum((salidas - 
means)^2)), 
    mse = mse(predicciones, salidas), 

  ) 

The different indicators computed for each of the 10 models trained with each of the 

structures were stored in a list called list_indicadores. This is done using the following code: 

R 

list_indicadores[["indicadores1"]] <-  indicadores 

Once this is done, a list is obtained that contains 10 data frames 

(indicadores1,…,indicadores10), which in turn contain the values of those of 𝑀𝑆𝐸 and 𝑅2of 

the predictions obtained by RNA models for each of the companies grouped by date. So, 

then the graph was built by using the following code. 
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R 
# Group the information of the different constructions in a single  
# data frame 
indi_graf_data <- do.call(cbind,list_indicadores) 
 
# Obtain the average results, for each period of time, using the  
# different constructions 
indi_graf_data |> 
  rowwise() |> 
  mutate( 
    Date = `indicadores1.Date`, 
    meanmse = mean(c_across(contains("mse"))), 
    meanr2 = mean(c_across(contains("r2"))) 
    ) |> 
  select( 
    Date, meanmse,meanr2 
  )|> 
  # Graph 
  mutate( 
    Date = as.Date(Date)) |> 
  ggplot(aes(x = Date, group = 1)) + 
  geom_line(aes(y = meanmse, color = "MSE")) + 
  geom_line(aes(y = meanr2, color = "R2")) + 
  scale_color_manual(values = c("blue", "green")) + 
  theme(axis.text.x = element_text(angle = 90)) + 
  labs(x = "Fecha", y = "Indicadores", color = "Indicadores") 

In addition to the graphs, the Table 4 was also used in the analysis of the results, which 

contains the companies that obtained the best and worst indicators for each structure. To 

obtain these data, the following code was used: 

R 
indicadores_X_emp <- data |> 
  filter(Date > data$Date[1]) |> 
  cbind(predicciones = predicciones1e[,1]) |> 
  cbind(means = meanse1) |> 
  mutate(salidas = salidas) |> 
  select(Date, predicciones, means, salidas, ID) |> 
  group_by(ID) |> 
  summarise( 
    r2 = 1 - (sum((salidas - predicciones)^2)/sum((salidas - 
means)^2)), 
    mse = mse(predicciones, salidas) 
  ) |> 

  select(ID, r2, mse) 
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Like the indicators computed by date, to save the indicators computed by company, a 

list called list_indic_emp was created. After having stored the 10 indicator data frames per 

company in the list, the companies with the best and worst results were extracted using the 

following code: 

R 
# Group the information of the different constructions in a single 
# data frame 
ind_emp_t <- do.call(rbind, list_indic_emp) 
 
# Compute the average R2 and MSE by company 
ind_emp_t <- ind_emp_t |> 
  group_by(ID) |> 
  summarize( 
    r2 = mean(r2), 
    mse= mean(mse)) |> 
  ungroup() |> 
  arrange(desc(r2)) 
 
# Obtain the 10 companies with the best and worst indicators 
mejores10 <- head(ind_emp_t,10) 

peores10 <- tail(ind_emp_t,10) 

And using the above variables and using the rbind() and cbind functions was how the 

Table 4 was created. 

Portfolio composition 

This section explains how the analysis of the comparison of the results obtained by the 

different portfolios was carried out (see Gráfica 11, Gráfica 12 and Gráfica 13). For this, it is 

first necessary to obtain the composition of the portfolios, by date, from the predictions 

obtained by using the arithmetic means and the RNA models. 

To calculate the composition of the portfolios, the R package quadprog by Berwin A. 

Turlach R port by Andreas Weingessel <Andreas.Weingessel@ci.tuwien.ac.at> Fortran 

contributions from Cleve Moler dpodi/LINPACK) (2019) was used. Below is the code used 

to find the composition of the portfolios from the predictions of the mean:: 
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R 
# A data frame was created in which all the information was stored: 
#   - IBEX values, as a reference index 
#   - Values of the predictions, both those obtained by the RNA  
#     model and by the arithmetic means 
 
DATA <- data |> 
  left_join(IBEXsel, by ="Date") |> 
  mutate(IBEX = Return_I) |> 
  arrange(Date) |> 
  filter( 
    Date > data$Date[1] 
  ) |> 
  mutate(predicciones = predicciones1e[,1]) |> 
  mutate( 
    Real = salidas, 
    RNA = predicciones, 
    Means = meanse1 
  ) |> 
  select(Date, Real, IBEX, RNA, Means, ID) 
 
# From the data frame DATA were created: 
#    - A data frame whose columns are the actual data of each of  
#      the companies for each of the time periods for which  
#      predictions were obtained. 
#    - A data frame whose columns are the data obtained by using  
#      the arithmetic means of each of the companies for each of the  
#      time periods for which predictions were obtained. 
 
pvtReal <- DATA |> 
  select(Date, Real, ID) |> 
  pivot_wider( 
    names_from = ID, 
    values_from = Real 
  ) 
 
pvtMeans <- DATA |> 
  select(Date, Means, ID) |> 
  pivot_wider( 
    names_from = ID, 
    values_from = Means 
  ) 
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R 
# The data frame was created in which the composition of the  
#  portfolios was stored for each of the periods for which  
# the prediction was obtained. 
weightsm <- data.frame() 
 
# Iteration by which the composition of the portfolios is found 
 
pb <- txtProgressBar(min = 0, max = length(unique(data$Date)[-1]), 
initial = 0, style = 3) 
 
for (i in 1:length(unique(data$Date)[-1])) { 
  if(i>1){ 
     
    # The data frame is created that includes the data to be used  
       # to find the composition of the portfolio, this is created by  
    # the actual data to date and the forecast for the next period. 
    datamQP <- pvtReal |> 
      filter(Date < unique(data$Date)[-1][i]) |> 
      rbind(pvtMeans |> 
              filter(Date == unique(data$Date)[-1][i]) 
      ) 
     
    # Eliminate those companies that do not have actual or  
    # forecast data 
    nare <- which(is.na(datamQP[dim(datamQP)[1],])) 
    naremo <- which(is.na(datamQP[(dim(datamQP)[1]-1),])) 
    nare <- c(nare,naremo) 
    nare <- unique(nare) 
    if(length(nare) != 0){ 
      carteram <- datamQP[, - nare] 
    }else{ 
      carteram <- datamQP 
    } 
     
    # Extract the forecasts 
    returnm <- carteram[dim(carteram)[1], -1] |> 
      as.matrix() |> 
      t() 
     
    # Calculate the covariance matrix 
    covmm <- cov(carteram[, -1], use = "complete.obs") 
    npcovmm <- nearPD(covmm)$mat |>  
      as.matrix() 
    # Extract the number of companies 
    n <- ncol(npcovmm) 
R 
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    # Find the composition of the portfolio 
    qp_outm <- solve.QP( 
      Dmat = 2*npcovmm, 
      dvec = rep(0,n), 
      Amat = cbind(-1, diag(n)), 
      bvec = c(-1, rep(0,n)), 
      meq = 1) 
    qp_outm <- qp_outm$solution 
    qp_outm <- floor(qp_outm*100)/100 
    for(j in 1:length(qp_outm)){ 
      if(qp_outm[j] < 0.001){ 
        qp_outm[j] <- 0 
      }else{} 
    } 
     
    # Save portfolio composition 
    names(qp_outm) <- names(carteram[, -1]) 
    weightsm <- bind_rows(weightsm, qp_outm) 
  } 
   
  setTxtProgressBar(pb,i) 
} 
 
close(pb) 
 
# Replace actual weights and observations with missing values with zero 
pvtReal[is.na(pvtReal)] <- 0 
weightsm[is.na(weightsm)] <- 0 

Then, to find the profitability of the portfolio, the compositions were multiplied by the 

real returns, it was assumed that one was invested in the first period and a cumulative sum 

was made throughout the values to obtain the behavior of the profitability throughout the 

period. time. 
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R 
# Finding the returns of the portfolios formed from the predictions  
# of the arithmetic mean 
 
return_CM <-  weightsm * pvtReal[-1,-1] 
return_CM <- rowSums(return_CM) 
return_CM <- c(1,return_CM) 
return_CM <- data.frame( 
  Date = pvtReal[,1], 
  Mean = return_CM 

) 

The same steps that were conducted to find the behaviour of the profitability of the 

portfolios from the arithmetic means were conducted to find the behaviour from the 

predictions obtained by the RNA model as seen in the code below. 

R 
# From the DATA data frame, a data frame was created whose columns  
# are the data obtained by using the RNA model of each of the  
# companies for each of the time periods for which predictions  
# were obtained. 
 
pvtRNA <- DATA |> 
  select(Date, RNA, ID) |> 
  pivot_wider( 
    names_from = ID, 
    values_from = RNA 
  ) 
 
# The data frame was created in which the composition of the portfolios  
# was stored for each of the periods for which the prediction  
# was obtained. 
weightse <- data.frame() 
 
# Iteration by which the composition of the portfolios is found 
 
pb <- txtProgressBar(min = 0, max = length(unique(data$Date)[-1]), 
initial = 0, style = 3) 
 
for (i in 1:length(unique(data$Date)[-1])) { 
  if(i>1){ 
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R 
    # The data frame is created that includes the data to be used  
    # to find the composition of the portfolio, this is created by  
    # the actual data to date and the forecast for the next period. 
    dataeQP <- pvtReal |> 
      filter(Date < unique(data$Date)[-1][i]) |> 
      rbind(pvtRNA |> 
              filter(Date == unique(data$Date)[-1][-1][i]) 
            ) 
    # Eliminate those companies that do not have actual or  
    # forecast data 
    nare <- which(is.na(dataeQP[dim(dataeQP)[1],])) 
    naremo <- which(is.na(dataeQP[(dim(dataeQP)[1]-1),])) 
    nare <- c(nare,naremo) 
    nare <- unique(nare) 
    if(length(nare) != 0){ 
      carterae <- dataeQP[, - nare] 
    }else{ 
      carterae <- dataeQP 
    } 
     
    # Extract forecasts 
    returne <- carterae[dim(carterae)[1], -1] |> 
      as.matrix() |> 
      t() 
     
    # Calculate the covariance matrix 
    covme <- cov(carterae[, -1], use = "complete.obs") 
    npcovme <- nearPD(covme)$mat |>  
      as.matrix() 
    # Extract the number of companies 
    n <- ncol(npcovme) 
     
    # Find the composition of the portfolio 
    qp_oute <- solve.QP( 
      Dmat = 2*npcovme, 
      dvec = rep(0,n), 
      Amat = cbind(-1, diag(n)), 
      bvec = c(-1, rep(0,n)), 
      meq = 1) 
    qp_oute <- qp_oute$solution 
    qp_oute <- floor(qp_oute*100)/100 
    for(j in 1:length(qp_oute)){ 
      if(qp_oute[j] < 0.001){ 
        qp_oute[j] <- 0 
      }else{} 
    } 
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R 
    # Save portfolio composition 
    names(qp_oute) <- names(carterae[, -1]) 
    weightse <- bind_rows(weightse, qp_oute) 
  } 
   
  setTxtProgressBar(pb,i) 
} 
 
close(pb) 
 
# Replace weights with missing values with zero 

weightse[is.na(weightse)] <- 0 

Then, to find the profitability of the portfolio, the compositions were multiplied by the 

real returns, it was assumed that one was invested in the first period and a cumulative sum 

was made throughout the values to obtain the behaviour of the profitability throughout the 

period time. 

R 
# Finding the returns of the portfolios formed from the predictions  
# of the RNA model 
 
return_CRNA <-  weightse * pvtReal[-1,-1] 
return_CRNA <- rowSums(return_CRNA) 
return_CRNA <- c(1,return_CRNA) 
return_CRNA <- data.frame( 
  Date = pvtReal[,1], 
  RNA = return_CRNA 
) 

Then, as with the indicators, a list_ret_RNA list was created in which the data frames 

of the different models built with each of the structures were stored. Then the following code 

was executed to obtain the graph. 

  



 

David Díaz Rodríguez  

104 

Application of artificial neural networks and quadratic programming in portfolio management  

R 
# Finding the behaviour of the returns of the IBEX for the period 
 
IBEXvals <- IBEXsel |> 
    filter(Date > unique(data$Date)[2]) |> 
    select(2) |> 
    pull() 
IBEXvals <- c(1, IBEXvals) 
 
data_rent_RNA <- do.call(cbind,list_ret_RNA) 
data_rent_RNA <- data_rent_RNA |> 
  mutate( 
    Date = RNA1.Date, 
    IBEX = IBEXvals, 
    Means = return_CM$Mean) |> 
  mutate_at(vars(contains(".RNA")), ~ cumsum(.)) |> 
  mutate( 
    IBEX = cumsum(IBEX), 
    Means = cumsum(Means)) |> 
  group_by(Date) |> 
  summarize( 
    meanRNA = mean(c_across(contains(".RNA"))), 
    max_y = max(c_across(contains(".RNA"))), 
    min_y = min(c_across(contains(".RNA"))), 
    min_5 = unname(quantile(c_across(contains(".RNA")),0.05)), 
    max_95 = unname(quantile(c_across(contains(".RNA")),0.95)), 
    IBEX = IBEX, 
    Means = Means) 
data_rent_RNA |> 
  mutate( 
    Date = as.Date(Date)) |> 
ggplot(aes(x = Date)) + 
  geom_ribbon(aes(ymin = min_y, ymax = min_5), fill = "blue", alpha = 
0.3) + 
  geom_ribbon(aes(ymin = max_y, ymax = max_95), fill = "blue", alpha = 
0.3) + 
  geom_ribbon(aes(ymin = min_5, ymax = max_95), fill = "blue", alpha = 
0.6) + 
  geom_line( 
    aes(y = meanRNA, color = "Media RNA1"), 
    linetype = "dashed") + 
  geom_line(aes(y = max_y), color = "blue") + 
  geom_line(aes(y = min_y), color = "blue") + 
  geom_line(aes(y = max_95), color = "blue") + 
  geom_line(aes(y = min_5, color = "RNA1")) + 
  geom_line(aes(y = IBEX, color = "IBEX")) + 
  geom_line(aes(y = Means, color = "Medias")) + 
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  scale_color_manual( 
    values = c( 
      "Media RNA1"="blue", 
      "RNA1" = "blue", 
      "IBEX" = "red", 
      "Medias" = "green")) + 
  guides( 
    color = guide_legend( 
      override.aes = list( 
        linetype = c("solid","dashed","solid","solid"))))+ 
  labs(x = "Fecha", 
       y = "Rentabilidades", 
       color = "Leyenda")+ 
  theme_minimal() 

 


